首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
An experimental model system involving the modification of carbohydrate composition of the target cell surface with neoglycolipids was developed for studying the role of surface carbohydrates of target cells in the NK-cell-mediated cytotoxicity. The polymeric glycoconjugates of the Glyc–PAA–PEA and Glyc–PAA(Flu)–PEA types (where Glyc was an oligosaccharide residue, PAA poly(acrylamide) polymer, PEA the phosphatidylethanolamine residue, and Flu fluorescein residue) capable of incorporating into the cell membrane were synthesized. The optimum structures of neoglycoconjugates and the conditions for their incorporation into K562 and Raji cell lines, which differ in their sensitivity to the NK-cell-mediated lysis were selected. The mechanism of association of glycoconjugates with the plasma cell membrane and the kinetics of their elimination from the cell surface were investigated using the fluorescent-labeled Glyc–PAA(Flu)–PEA derivatives. The spatial accessibility of the carbohydrate ligands for the interaction with human NK cells was demonstrated. The target cells modified with the Lex trisaccharide were shown to be more sensitive to the cytotoxic effect of human NK cells than the intact cells.  相似文献   

2.
A variety of glycoconjugates, including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and characterized in early biochemical studies. Later studies of virus-transformed fibroblasts demonstrated the association of GSL expression profiles with cell phenotypes. Changes of GSL expression profile were observed during mammalian embryogenesis. Cell surface molecules expressed on embryos in a stage-specific manner appeared to play key roles in regulation of cell-cell interaction and cell sorting during early development. Many mAbs showing stage-specific reactivity with mouse embryos were shown to recognize carbohydrate epitopes. Among various stage-specific embryonic antigens (SSEAs), SSEA-1 was found to react with neolacto-series GSL Lex, while SSEA-3 and SSEA-4 reacted with globo-series Gb5 and monosialyl-Gb5, respectively. GSL expression during mouse early development was shown to shift rapidly from globo-series to neolacto/lacto-series, and then to ganglio-series. We found that multivalent Lex caused decompaction of mouse embryos, indicating a functional role of Lex epitope in the compaction process. Autoaggregation of mouse embryonal carcinoma (EC) F9 cells provided a useful model of the compaction process. We showed that Lex-Lex interaction, a novel type of molecular interavction termed carbohydrate-carbohydrate interaction (CCI), was involved in cell aggregation. Similar shifting of GSL expression profiles from globo-series and neolacto/lacto-series to ganglio-series was observed during differentiation of human EC cells and embryonic stem (ES) cells, reflecting the essential role of cell surface glycoconjugates in early development.  相似文献   

3.
NK cells play important roles in innate immunity against tumors and infections of the host. Studies show that CD107a (LAMP-1) may be a marker for degranulation of NK and activated CD8+ T cells. In our study, the relationship between the expression of CD107a, cytokine secretion and cytotoxic activity in CD56+ NK, CD8+ T cells and lymphocytes has been determined after various stimuli. Effector cells from PBMCs of healthy subjects were isolated and K562 cell line was used as target of cytotoxicity. IL-2 stimulation resulted in a significant increase of CD107a expression in CD56+ NK, CD8+ T cells and lymphocytes. Increased expression of CD107a after IL-2 stimulation of NK cells was parallel to the increase of cytotoxicity. Our results suggest that CD107a expression may be a sensitive marker for the cytotoxic activity determination.  相似文献   

4.
Siglec-9 is an MHC-independent inhibitory receptor expressed on a subset of natural killer (NK) cells. Siglec-9 restrains NK cytotoxicity by binding to sialoglycans (sialic acid-containing glycans) on target cells. Despite the importance of Siglec-9 interactions in tumor immune evasion, their role as an immune evasion mechanism during HIV infection has not been investigated. Using in vivo phenotypic analyses, we found that Siglec-9+ CD56dim NK cells, during HIV infection, exhibit an activated phenotype with higher expression of activating receptors and markers (NKp30, CD38, CD16, DNAM-1, perforin) and lower expression of the inhibitory receptor NKG2A, compared to Siglec-9- CD56dim NK cells. We also found that levels of Siglec-9+ CD56dim NK cells inversely correlate with viral load during viremic infection and CD4+ T cell-associated HIV DNA during suppressed infection. Using in vitro cytotoxicity assays, we confirmed that Siglec-9+ NK cells exhibit higher cytotoxicity towards HIV-infected cells compared to Siglec-9- NK cells. These data are consistent with the notion that Siglec-9+ NK cells are highly cytotoxic against HIV-infected cells. However, blocking Siglec-9 enhanced NK cells’ ability to lyse HIV-infected cells, consistent with the known inhibitory function of the Siglec-9 molecule. Together, these data support a model in which the Siglec-9+ CD56dim NK subpopulation is highly cytotoxic against HIV-infected cells even whilst being restrained by the inhibitory effects of Siglec-9. To harness the cytotoxic capacity of the Siglec-9+ NK subpopulation, which is dampened by Siglec-9, we developed a proof-of-concept approach to selectively disrupt Siglec/sialoglycan interactions between NK and HIV-infected cells. We achieved this goal by conjugating Sialidase to several HIV broadly neutralizing antibodies. These conjugates selectively desialylated HIV-infected cells and enhanced NK cells’ capacity to kill them. In summary, we identified a novel, glycan-based interaction that may contribute to HIV-infected cells’ ability to evade NK immunosurveillance and developed an approach to break this interaction.  相似文献   

5.
A Lex trisaccharide functionalized with a cysteamine arm was prepared and this synthesis provided additional information on the reactivity of N-acetylglucosamine O-4 acceptors when they are glycosylated with trichloroacetimidate donors activated with excess BF3·OEt2. In turn, this trisaccharide was conjugated to BSA lysine side chains through a squarate–mediated coupling. This BSA-Lex glycoconjugate displayed 35 Lex haptens per BSA molecule. The relative affinity of the anti-Lex monoclonal antibody SH1 for the Lex antigen and analogues of Lex in which the d-glucosamine, l-fucose or d-galactose residues were replaced with d-glucose, l-rhamnose and d-glucose, respectively, was measured by competitive ELISA experiments. While all analogues were weaker inhibitors than the Lex antigen, only the analogue of Lex in which the galactose residue was replaced by a glucose unit showed no binding to the SH1 mAb. To confirm that the reduced or loss of recognition of the Lex analogues by the anti-Lex mAb SH1 did not result from different conformations adopted by the analogues when compared to the native Lex antigen, we assessed the conformational behavior of all trisaccharides by a combination of stochastic searches and NMR experiments. Our results showed that, indeed, the analogues adopted the same stacked conformation as that identified for the Lex antigen. The identification of a trisaccharide analogue that does not cross-react with Lex but still retains the same conformation as Lex constitutes the first step to the design of a safe anti-cancer vaccine based on the dimeric Lex tumor associated carbohydrate antigen.  相似文献   

6.
Intratumoral phenotypic diversity is well documented with regard to tumor associated carbohydrate antigens (TACA). The factors which control the expression of these cell-surface oligosaccharides on different cells of the same tumor are not understood. We investigated the expression of a panel of mucin associated oligosaccharides in cell lines growing at different surface densities (number of cells per cm2 of growth flask). Results show that the apparent expression of extended Lea-Lex, Lea and Lex, sialyl Lea, Tn and sialyl Tn varies with density of growth by an invasive human squamous cell lung carcinoma cell line (NU6-1), a benign variant (NE-18) and the human lung epithelial cell line BEAS-2B. The results indicate that one of the factors influencing the apparent expression of mucin-associated oligosaccharides is cell-cell interactions.Abbreviations Mab monoclonal antibody - FIT fluorescein isothiocyanate - TACA tumor associated carbohydrate antigen  相似文献   

7.
We have synthesized several potential inhibitors and/or modifiers of the carbohydrate portion of plasma membrane glycoconjugates. These include fluorinated and actylated analogs of D-glucosamine, D-galactosamine, and D-mannosamine. These compounds have been tested to determine their effects on both [14C] glucosamine and [3H] leucine incorporation into glycoconjugate and on cell growth and viability using P-288 murine lymphoma cells maintained in tissue culture. The most cytotoxic agent tested was 2-acetamido-2-deoxy-1,3,4,6-tetra-O-acetyl-β-D-glucopyranose or simply β-pentaacetylglucosamine which prevented cell growth at 10?4–10?3 M. β-Pentaacetylglucosamine cytotoxicity was correlated with its high lipid solubility, having an octanol/water partition coefficient of 0.424 as compared with 0.278 for the β-anomer and 0.017 for N-acetylglucosamine. In vitro metabolism studies with [14C]-and/or [3H]-labeled pentaacetylglucosamine have indicated intracellular de-O-acetylation leading to the biosynthesis of UDP-N-acetylglucosamine, followed by the incorporation of this sugar into cellular glycoprotein. Concomitant with the formation of increased amounts of this nucleotide sugar, intracellular UTP and CTP pools fell to one third normal within 3 h after the administration of 1 mM pentaacetylglucosamine. At present it is unclear whether the cytotoxicity of β-pentaacetylglucosamine or other similar agents is due to alterations in nucleotide and nucleotide-sugar pools causing a decrease in energy charge and polynucleotide biosynthesis or is due to a direct effect on membrane glycoconjugate biosynthesis.  相似文献   

8.
Natural killer (NK) cells trigger cytotoxicity and interferon (IFN)‐γ secretion on engagement of the natural‐killer group (NKG)2D receptor or members of the natural cytotoxicity receptor (NCR) family, such as NKp46, by ligands expressed on tumour cells. However, it remains unknown whether T cells can regulate NK cell‐mediated anti‐tumour responses. Here, we investigated the early events occurring during T cell–tumour cell interactions, and their impact on NK cell functions. We observed that on co‐culture with some melanomas, activated CD4+ T cells promoted degranulation, and NKG2D‐ and NKp46‐dependent IFN‐γ secretion by NK cells, probably owing to the capture of NKG2D and NKp46 ligands from the tumour‐cell surface (trogocytosis). This effect was observed in CD4+, CD8+ and resting T cells, which showed substantial amounts of cell surface major histocompatibility complex class I chain‐related protein A on co‐culture with tumour cells. Our findings identify a new, so far, unrecognized mechanism by which effector T cells support NK cell function through the capture of specific tumour ligands with profound implications at the crossroad of innate and adaptive immunity.  相似文献   

9.
An experimental model system involving the modification of carbohydrate composition of the target cell surface with neoglycolipids was developed for studying the role of surface carbohydrates of target cells in the NK-cell-mediated cytotoxicity. The polymeric glycoconjugates of the Glyc-PAA-PEA and Glyc-PAA(Flu)-PEA types (where Glyc was an oligosaccharide residue, PAA poly(acrylamide) polymer, and PEA the phosphatidylethanolamine residue, and Flu fluorescein residue) capable of incorporation into the cell membrane were synthesized. The optimum structures of neoglycoconjugates and conditions for their incorporation into K562 and Raji cell lines, which differ in their sensitivity to the NK-cell-mediated lysis were selected. The mechanism of association of glycoconjugates with the plasma cell membrane and the kinetics of their elimination from the cell surface were investigated using the fluorescent-labeled Glyc-PAA(Flu)-PEA derivatives. The spatial accessibility of the carbohydrate ligands for the interaction with human NK cells was demonstrated. The target cells modified with the Le(x) trisaccharide were shown to be more sensitive to the cytotoxic effect of human NK cells than the intact cells. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.  相似文献   

10.
《Cytotherapy》2020,22(10):552-562
Background aimsAnti-CD19 chimeric antigen receptor (CAR)-modified T cells have shown dramatic cytotoxicity against B-cell malignancies. Currently, autologous T cells are conventionally used to manufacture CAR T cells. Low quality or insufficient quantity of autologous T cells may lead to failure of CAR T preparations. Moreover, CAR T preparation usually takes 1–2 weeks, which is too long for patients with rapid disease progression to successfully infuse CAR T cells. Thus, the development of a ready-to-use CAR immunotherapy strategy is needed. NK-92, a natural killer (NK) cell line derived from an NK lymphoma patient, has been gradually applied as a CAR-modified effector cell. To avoid the potential development of secondary NK lymphoma in patients, large doses of radiation are used to treat NK-92 cells before clinical application, which ensures the safety but reduces the cytotoxicity of NK-92 cells. Therefore, it is crucial to explore a suitable radiation dose that ensures short life span and good cytotoxicity of CAR NK-92 cells.MethodsNK-92MI, a modified IL-2-independent NK-92 cell line, was used to establish an anti-CD19 CAR NK. The suitable radiation dose of CAR NK was then explored in vitro and validated in vivo, and the specific cytotoxicity of irradiated and unirradiated CAR NK against CD19+ malignant cells was assessed.ResultsCAR NK exhibited specific cytotoxicity against CD19+ malignant cells. Irradiation ensured a short life span of CAR NK in vitro and in vivo. Encouragingly, irradiated CAR NK displayed an anti-CD19+ malignancy capacity similar to that of unirradiated CAR NK.ConclusionsFive Gy is a suitable radiation dose to ensure the safety and effectiveness of CD19 CAR NK-92MI cells.  相似文献   

11.
Avci FY  Li X  Tsuji M  Kasper DL 《Nature medicine》2011,17(12):1602-1609
Glycoconjugate vaccines have provided enormous health benefits globally, but they have been less successful in some populations at high risk for developing disease. To identify new approaches to enhancing glycoconjugate effectiveness, we investigated molecular and cellular mechanisms governing the immune response to a prototypical glycoconjugate vaccine. We found that in antigen-presenting cells a carbohydrate epitope is generated upon endolysosomal processing of group B streptococcal type III polysaccharide coupled to a carrier protein. In conjunction with a carrier protein-derived peptide, this carbohydrate epitope binds major histocompatibility class II (MHCII) and stimulates carbohydrate-specific CD4(+) T cell clones to produce interleukins 2 and 4-cytokines essential for providing T cell help to antibody-producing B cells. An archetypical glycoconjugate vaccine that we constructed to maximize the presentation of carbohydrate-specific T cell epitopes is 50-100 times more potent and substantially more protective in a neonatal mouse model of group B Streptococcus infection than a vaccine constructed by methods currently used by the vaccine industry. Our discovery of how glycoconjugates are processed resulting in presentation of carbohydrate epitopes that stimulate CD4(+) T cells has key implications for glycoconjugate vaccine design that could result in greatly enhanced vaccine efficacy.  相似文献   

12.
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.  相似文献   

13.
Carbohydrate-specific monoclonal antibodies were used to demonstrate the expression of a new membrane glycoprotein on F9 murine embryonal carcinoma cells. Sialyl Lex was detected using monoclonal antibody FH6 in a sensitive, cell monolayer radioimmunoassay. The antigen codistributed in gel filtration of a crude homogenate and in a membrane-enriched fraction with two known lactosaminoglycan markers, i and SSEA-1 (Lex or X hapten). Sialyl Lex was further shown to be carried by a novel glycoprotein, termed small lactosaminoglycan-like glycoprotein (sLAG) which could be purified by immunoaffinity chromatography. In two-dimensional polyacrylamide gel electrophoresis this glycoprotein had an apparent molecular weight of 45 kDa and a pI of about 6.5. The more differentiated cell line PYS-2 also expressed sialyl Lex and i antigens but not Lex, and FH6-reactive sLAG could be extracted from PYS-2 membranes. Sialylation of fucosylated type 2 carbohydrate chains (X haptens) thus may be an early modification of embryonic carbohydrate antigens.  相似文献   

14.
The membrane carbohydrate antigen, sialyl Lewis x (sLex), is involved in cellular adhesive interactions in many diseases, such as cancer, inflammation and thrombosis. This antigen is also found on soluble macromolecules, such as serum glycoproteins, but the precise role of soluble sLex in modifying disease processes, or reflecting the pathological changes is still unclear. Although methods were previously reported for the measurement of soluble sLex, many of these were not well characterised, measurements were mainly made on mixtures of molecules, and the anti-sLex antibodies were used at concentrations that made the assay expensive. In this study an ELISA has been devised that detects sLex in purified soluble glycoconjugates using the anti-sLex antibody, CSLEX 1. Commercially-available haptoglobin (Hp) and synthetic complexes of Lewis antigens with polyacrylamide were used as model substances in developing the procedure. Key steps were washing the antibody/antigen complex with ten times diluted salt solution to prevent dissociation of the complex and the use of bovine serum albumin for blocking non-specific interactions. The assay was shown to be very specific, its precision was in the range 6–12%, and it could detect less than a pmol of sLex. It could also distinguish between different densities of sLex on the same amount of glycoconjugate. Determination of sLex in Hp isolated from small groups of healthy individuals, cancer patients, and rheumatoid arthritis sufferers suggested that the antigen expression is increased in disease. This method, which is an improvement on those previously described, will be useful for determining sLex in many different types of soluble glycoconjugate, and used in combination with synthetic carbohydrate polyacrylamide complexes, will help to standardize measurements of soluble sLex in the future.  相似文献   

15.
16.
Low concentrations of exogenously added recombinant interleukin 2 (rIL-2) were able to augment OK-432-induced natural killer (NK) cell activity. This kind of augmenting effect depended on the dose of rIL-2 and manifested itself only in PBMC stimulated with OK-432 (OK-MC) followed by rIL-2; augmentation did not happen in the reverse order. The existence of CD16+/CD25+ (IL-2 receptor positive; IL-2R+) and CD57+/CD25+ double positive cells which possess NK cell surface markers in OK-MC markedly increased in a long-term culture (12 days). A strong positive correlation was observed between the IL-2-dependent augmentation of NK activity and the quantitative changes in cell populations that possessed NK cell phenotypes. Treatment of the day-12-OK-MC with monoclonal anti-CD56 antibody plus complement could almost completely abrogate the augmented NK cytotoxicity. Furthermore, this augmenting effect was detectable within 4 hr after addition of rIL-2 at single cell level, suggesting that the effect did not require NK cell's DNA synthesis. Thus it was suggested that OK-432 could promote and upregulate the expression of IL-2 receptor (CD25) on CD56+ NK cell populations. Moreover, it was considered that the interaction of low concentration rIL-2 with IL-2 receptors on OK-432-activated NK cells could augment their lytic function.  相似文献   

17.
18.
19.
This report demonstrates that in vitro activation of murine spleen cells with interleukin-2 (IL-2) or the bacterial superantigen staphylococcal enterotoxin A (SEA) results in different patterns of activation and function of cytotoxic cells. Lymphokine-activated killer activity and antibody-dependent cellular cytotoxicity (ADCC) are mainly mediated by IL-2 activated natural killer (NK) cells. SEA is the most powerful T cell mitogen known so far and retarets cytotoxic T lymphocytes (CTL) to tumors expressing major histocompatibility complex (MHC) class II in staphylococcal-enterotoxin-dependent cellular cytotoxicity (SDCC). Culture of mouse spleen cells with SEA led to expansion and activation of T cells which demonstrated strong SDCC activity and some NK-like cytotoxicity after 5 days in culture. Cell sorting revealed that both CD8+ and CD4+ T cells mediated SDCC but the former were more effective. Phenotypic analysis showed that SEA preferentially stimulated and expanded T cells expressing T cell receptor V11, in particular CD8+ T cells. Combined activation with SEA and IL-2 resulted in simultaneous induction of T and NK cell cytotoxicity. Moreover, IL-2 had additive effects on SEA-induced SDCC. Combined treatment with SEA and IL-2 might therefore be an approach to induce maximal cytotoxicity against tumors and to recruit both T and NK cells in tumor therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号