首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of pancuronium with sodium channels was investigated in squid axons. Sodium current turns on normally but turns off more quickly than the control with pancuronium 0.1-1mM present internally; The sodium tail current associated with repolarization exhibits an initial hook and then decays more slowly than the control. Pancuronium induces inactivation after the sodium inactivation has been removed by internal perfusion of pronase. Such pancuronium-induced sodium inactivation follows a single exponential time course, suggesting first order kinetics which represents the interaction of the pancuronium molecule with the open sodium channel. The rate constant of association k with the binding site is independent of the membrane potential ranging from 0 to 80 mV, but increases with increasing internal concentration of pancuronium. However, the rate constant of dissociation l is independent of internal concentration of pancuronium but decreases with increasing the membrane potential. The voltage dependence of l is not affected by changine external sodium concentration, suggesting a current-independent conductance block, The steady-state block depends on the membrane potential, being more pronounced with increasing depolarization, and is accounted for in terms of the voltage dependence of l. A kinetic model, based on the experimental observations and the assumption on binding kinetics of pancuronium with the open sodium channel, successfully simulates many features of sodium current in the presence of pancuronium.  相似文献   

2.
To determine how the permeant cations interact with the sodium channel, the instantaneous current-voltage (I-V) relationship, conductance-ion concentration relationship, and cation selectivity of sodium channels were studied with internally perfused, voltage clamped squid giant axons in the presence of different permeant cations in the external solution. In Na-containing media, the instantaneous I-V curve was almost linear between +60 and -20 mV, but deviated from the linearity in the direction to decrease the current at more negative potentials. The linearity of instantaneous I-V curve extended to more negative potentials with lowering the external Ca concentration. The I-V curve in Li solution was almost the same as that in Na solution. The linearity of the I-V curve improved in NH4 solution exhibiting only saturation at -100 mV with no sign of further decrease in current at more negative potentials. Guanidine and formamidine further linearized the instantaneous I-V curve. The conductance of the sodium channels as measured from the tail current saturated at high concentrations of permeant cations. The apparent dissociation constants determined from the conductance-ion concentration curve at -60 mV were as follows: Na, 378 mM; Li, 247 mM; NH4, 174 mM; guanidine, 111 mM; formamidine, 103 mM. The ratio of the test cation permeability to the sodium permeability as measured from the reversal potentials of tail currents varied with the test cation concentration and/or the membrane potential. These observations are incompatible with the independence principle, and can be explained on the basis of the Eyring's rate theory. It is suggested that the slope of the instantaneous I-V curve is determined by the relative affinity of permeant cations and blocking ions (Ca) for the binding site in the sodium channel. The ionic selectivity of the channel depends on the energy barrier profile of the channel.  相似文献   

3.
Single sodium channels from the squid giant axon   总被引:9,自引:4,他引:5       下载免费PDF全文
Since the work of A. L. Hodgkin and A. F. Huxley (1952. J. Physiol. [Lond.].117:500-544) the squid giant axon has been considered the classical preparation for the study of voltage-dependent sodium and potassium channels. In this preparation much data have been gathered on macroscopic and gating currents but no single sodium channel data have been available. This paper reports patch clamp recording of single sodium channel events from the cut-open squid axon. It is shown that the single channel conductance in the absence of external divalent ions is approximately 14 pS, similar to sodium channels recorded from other preparations, and that their kinetic properties are consistent with previous results on gating and macroscopic currents obtained from the perfused squid axon preparation.  相似文献   

4.
The effects of aminopyridines on ionic conductances of the squid giant axon membrane were examined using voltage clamp and internal perfusion techniques. 4-Aminopyridine (4-AP) reduced potassium currents, but had no effect upon transient sodium currents. The block of potassium channels by 4-AP was substantially less with (a) strong depolarization to positive membrane potentials, (b) increasing the duration of a given depolarizing step, and (c) increasing the frequency of step depolarizations. Experiments with high external potassium concentrations revealed that the effect of 4-AP was independent of the direction of potassium ion movement. Both 3- and 2-aminopyridine were indistinguishable from 4-AP except in potency. It is concluded that aminopyrimidines may be used as tools to block the potassium conductance in excitable membranes, but only within certain specific voltage and frequency limits.  相似文献   

5.
The effects of n-alkylguanidine derivatives on sodium channel conductance were measured in voltage clamped, internally perfused squid giant axons. After destruction of the sodium inactivation mechanism by internal pronase treatment, internal application of n-amylguanidine (0.5 mM) or n-octylguanidine (0.03 mM) caused a time-dependent block of sodium channels. No time-dependent block was observed with shorter chain derivatives. No change in the rising phase of sodium current was seen and the block of steady-state sodium current was independent of the membrane potential. In axons with intact sodium inactivation, an apparent facilitation of inactivation was observed after application of either n-amylguanidine or n-octylguanidine. These results can be explained by a model in which alkylguanidines enter and occlude open sodium channels from inside the membrane with voltage-independent rate constants. Alkylguanidine block bears a close resemblance to natural sodium inactivation. This might be explained by the fact that alkylguanidines are related to arginine, which has a guanidino group and is thought to be an essential amino acid in the molecular mechanism of sodium inactivation. A strong correlation between alkyl chain length and blocking potency was found, suggesting that a hydrophobic binding site exists near the inner mouth of the sodium channel.  相似文献   

6.
Deoxycholate can react with sodium channels with a high potency. The apparent dissociation constant for the saturable binding reaction is 2 microM at 8 degrees C, and the heat of reaction is approximately -7 kcal/mol. Four independent test with Na-free media, K-free media, tetrodotoxin, and pancuronium unequivocally indicate that it is the sodium channel that is affected by deoxycholate. Upon depolarization of the membrane, the drug modified channel exhibits a slowly activating and noninactivating sodium conductance. The kinetic pattern of the modified channel was studied by increasing deoxycholate concentration, lowering the temperature, chemical elimination of sodium inactivation, or conditioning depolarization. The slow activation of the modified channel can be represented by a single exponential function with the time constant of 1--5 ms. The modified channel is inactivated only partially with a time constant of 1 S. The reversal potential is unchanged by the drug. Observations in tail currents and the voltage dependence of activation suggest that the activation gate is actually unaffected. The apparently slow activation may reflect an interaction betweem deoxycholate and the sodium channel in resting state.  相似文献   

7.
Na+ permeation through normal and batrachotoxin (BTX)-modified squid axon Na+ channels was characterized. Unmodified and toxin-modified Na+ channels were studied simultaneously in outside-out membrane patches using the cut-open axon technique. Current-voltage relations for both normal and BTX-modified channels were measured over a wide range of Na+ concentrations and voltages. Channel conductance as a function of Na+ concentration curves showed that within the range 0.015-1 M Na+ the normal channel conductance is 1.7-2.5-fold larger than the BTX-modified conductance. These relations cannot be fitted by a simple Langmuir isotherm. Channel conductance at low concentrations was larger than expected from a Michaelis-Menten behavior. The deviations from the simple case were accounted for by fixed negative charges located in the vicinity of the channel entrances. Fixed negative charges near the pore mouths would have the effect of increasing the local Na+ concentration. The results are discussed in terms of energy profiles with three barriers and two sites, taking into consideration the effect of the fixed negative charges. Either single- or multi-ion pore models can account for all the permeation data obtained in both symmetric and asymmetric conditions. In a temperature range of 5-15 degrees C, the estimated Q10 for the conductance of the BTX-modified Na+ channel was 1.53. BTX appears not to change the Na+ channel ion selectively (for the conditions used) or the surface charge located near the channel entrances.  相似文献   

8.
Summary Permeability constant ratios among monovalent cations were studied in the resting membrane of a giant axon of a Pacific squid,Loligo opalescens, by observing the relationship between the membrane potential and the ion concentration.The average permeability ratios are: Tl, 1.8; K, 1.0; Rb, 0.72; Cs, 0.16; Na, <0.08; Li, <0.08. These permeability ratios suggest that neither valinomycin nor nonactin are adequate models for the sites producing the resting permeability in the axonal membrane.Cyclic polyetherbis(t-butyl cyclohexyl) 18-crown-6 does not increase the permeability ratioP Cs/P K except when applied at concentrations (5×10–5 m) at which the surfactant properties of this molecule may become significant.  相似文献   

9.
Associated with the opening and closing of the sodium channels of nerve membrane is a small component of capacitative current, the gating current. After termination of a depolarizing step the gating current and sodium current decay with similar time courses. Both currents decay more rapidly at relatively negative membrane voltages than at positive ones. The gating current that flows during a depolarizing step is diminished by a pre-pulse that inactivates the sodium permeability. A pre-pulse has no effect after inactivation has been destroyed by internal perfusion with the proteolytic enzyme pronase. Gating charge (considered as positive charge) moves outward during a positive voltage step, with voltage dependent kinetics. The time constant of the outward gating current is a maximum at about minus 10 mV, and has a smaller value at voltages either more positive or negative than this value.  相似文献   

10.
We have studied the effects of temperature changes on Na currents in squid giant axons. Decreases in temperature in the 15-1 degrees C range decrease peak Na current with a Q10 of 2.2. Steady state currents, which are tetrodotoxin sensitive and have the same reversal potential as peak currents, are almost unaffected by temperature changes. After removal of inactivation by pronase treatment, steady state current amplitude has a Q10 of 2.3. Na currents generated at large positive voltages sometimes exhibit a biphasic activation pattern. The first phase activates rapidly and partially inactivates and is followed by a secondary slow current increase that lasts several milliseconds. Peak Na current amplitude can be increased by delivering large positive prepulses, an effect that is more pronounced at low temperatures. The slow activation phase is eliminated after a positive prepulse. The results are consistent with the hypothesis that there are two forms of the Na channel: (a) rapidly activating channels that completely inactivate, and (b) slowly activating "sleepy" channels that inactivate slowly if at all. Some fast channels are assumed to be converted to sleepy channels by cooling, possibly because of a phase transition in the membrane. The existence of sleepy channels complicates the determination of the Q10 of gating parameters and single-channel conductance.  相似文献   

11.
Summary The effects of spin-labeled local anesthetics on sodium currents of internally perfused squid axons were studied using the voltage-clamp technique. Internal application (10 m) of the most potent spin-labeled local anesthetic used in this study produced a small initial block of sodium currents. However, after sixty repetitive pulses (to +80 mV) given at 1 Hz, the sodium currents were drastically reduced. In addition to this frequency-dependent phenomenon, the anesthetic effect on the sodium currents was also sensitive to the voltage of the pulses. Both the frequency- and voltage-dependent properties remained intact after removal of sodium inactivation with pronase. The recovery of sodium currents from this frequency-dependent anesthetic effect followed a single exponential curve with a surprisingly long time constant of about 10 min. Such a long recovery time, which is longer than any known sodium inactivation process, led us to suggest that the recovery process represents the dissociation of drug molecules from their binding sites. We have also found that increasing hydrophobic character of the homologues series of spin-labeled local anesthetics enhances the frequency- and voltage-dependent block of sodium currents. This effect strongly suggests that hydrophobic interaction is an integral component of the binding site. These probes with their selective effects on the sodium currents, are expected to be highly useful in studying the molecular structure of the sodium channels.  相似文献   

12.
13.
The effects of spin-labeled local anesthetics on sodium currents of internally perfused squid axons were studied using the voltage-clamp technique. Internal application (10 mum) of the most potent spin-labeled local anesthetic used in this study produced a small initial block of sodium currents. However, after sixty repetitive pulses (to + 80 mV) given at 1 Hz, the sodium currents were drastically reduced. In addition to this frequency-dependent phenomenon, the anesthetic effect on the sodium currents was also sensitive to the voltage of the pulses. Both the frequency- and voltage-dependent properties remained intact after removal of sodium inactivation with pronase. The recovery of sodium currents from this frequency-dependent anesthetic effect followed a single exponential curve with a surprisingly long time constant of about 10 min. Such a long recovery time, which is longer than any known sodium inactivation process, led us to suggest that the recovery process represents the dissociation of drug molecules from their binding sites. We have also found that increasing hydrophobic character of the homologues series of spin-labeled local anesthetics enhances the frequency- and voltage-dependent block of sodium currents. This effect strongly suggests that hydrophobic interaction is an integral component of the binding site. These probes with their selective effects on the sodium currents, are expected to be highly useful in studying the molecular structure of the sodium channels.  相似文献   

14.
The inhibition of sodium currents by local anesthetics and other blocking compounds was studied in perfused, voltage-clamped segments of squid giant axon. When applied internally, each of the eight compounds studied results in accumulating "use-depnedent" block of sodium currents upon repetitive pulsing. Recovery from block occurs over a time scale of many seconds. In axons treated with pronase to completely eliminate sodium inactivation, six of the compounds induce a time- and voltage-dependent decline of sodium currents after activation during a maintained depolarization. Four of the time-dependent blocking compounds--procaine, 9-aminoacridine, N-methylstrychnine, and QX572--also induce altered sodium tail currents by hindering closure of the activation gating mechanism. Treatment of the axon with pronase abolishes use-dependent block completely by QX222, QX314, 9-aminoacridine, and N-methylstrychnine, but only partially be tetracaine and etidocaine. Two pulse experiments reveal that recovery from block by 9-aminoacridine or N-methyl-strychnine is greatly accelerated after pronase treatment. Pronase treatment abolishes both use-dependent and voltage-dependent block by QX222 and QX314. These results provide support for a direct role of the inactivation gating mechanism in producing the long-lasting use-dependent inhibition brought about by local anesthetic compounds.  相似文献   

15.
Single-channel, macroscopic ionic, and macroscopic gating currents were recorded from the voltage-dependent sodium channel using patch-clamp techniques on the cut-open squid giant axon. To obtain a complete set of physiological measurements of sodium channel gating under identical conditions, and to facilitate comparison with previous work, comparison was made between currents recorded in the absence of extracellular divalent cations and in the presence of physiological concentrations of extracellular Ca2+ (10 mM) and Mg2+ (50 mM). The single-channel currents were well resolved when divalent cations were not included in the extracellular solution, but were decreased in amplitude in the presence of Ca2+ and Mg2+ ions. The instantaneous current-voltage relationship obtained from macroscopic tail current measurements similarly was depressed by divalents, and showed a negative slope-conductance region for inward current at negative potentials. Voltage dependent parameters of channel gating were shifted 9-13 mV towards depolarized potentials by external divalent cations, including the peak fraction of channels open versus voltage, the time constant of tail current decline, the prepulse inactivation versus voltage relationship, and the charge-voltage relationship for gating currents. The effects of divalent cations are consistent with open channel block by Ca2+ and Mg2+ together with divalent screening of membrane charges.  相似文献   

16.
Squid giant axon could be excited in concentrated glycerol solutions containing normal concentrations of electrolytes, when osmolalities of solutions inside and outside the axon were matched. These glycerol solutions did not freeze at the temperature as low as -19 degrees C. The nerve excitation in these solutions were observed at this low temperature. The excitation process at this low temperature was slowed down and time constants of the excitation kinetics were several hundredfold larger than those in normal seawater at 10 degrees C, under which temperature the squid habituated. The temperature coefficients for the electrophysiological membrane parameters under this condition were larger than those in normal seawater above 0 degrees C. The Q10 value for the conduction velocity was 2.0 and that of the duration of the action potential was around 8.5. The time course of the membrane currents was also slowed with the Q10 value of around 5 and the magnitude decreased with the Q10 value of around 2 as the temperature was lowered. The Q10 values for the kinetics of the on process of the Na-channel were around 4.5 and were almost the same as those of the off process of the Na-channel in the wide range of the temperature below 0 degrees C. The Q10 value of the on process of K-channel was around 6.5 and was larger than those for Na-channel. The Q10 values increased gradually as the temperature was lowered.  相似文献   

17.
We have investigated the actions of internal and external Zn2+ on squid axon K channel ionic and gating currents. As has been noted previously, application of Zn2+ to either membrane surface substantially slowed the activation of these channels with little or no change in deactivation. Internal Zn2+ (near 200-300 nM) slowed channel activation by up to sixfold over the range of membrane voltages from -30 to +50 mV. External Zn2+ (10 mM) produced an approximate twofold slowing of activation from -40 to +40 mV. We found that the changes in ionic current activation kinetics were accompanied by less than a twofold slowing of channel-gating currents in a narrow range of potentials near -30 mV. There was, at most, only a few percent reduction of charge movement associated with Zn2+ application. We conclude that these ions interact with channel components involved in weakly voltage-dependent conformational changes. Although there are some differences in detail, the general similarity of the actions of both internal and external Zn2+ on channel function suggests that the modified channel-gating step involves amino acids accessible to both the internal and external membrane surface.  相似文献   

18.
Activation of potassium conductance in squid axons with membrane depolarization is delayed by conditioning hyperpolarization of the membrane potential. The delayed kinetics superpose with the control kinetics almost, but not quite, exactly following time translation, as demonstrated previously in perfused axons by Clay and Shlesinger (1982). Similar results were obtained in this study from nonperfused axons. The lack of complete superposition argues against the Hodgkin and Huxley (1952) model of potassium conductance. The addition of a single kinetic state to their model, accessible only by membrane hyperpolarization, is sufficient to describe this effect (Young and Moore, 1981).  相似文献   

19.
20.
Perfused squid axons in which K-conductance is blocked show, under voltage clamp, incomplete inactivation of the sodium conductance. The presence of this phenomenon in nonperfused axons was found by comparing membrane current records before and after tetrodotoxin addition to the bathing solution. Sodium currents in nonperfused axons are comparable in behavior at positive potentials to those seen in Cs-perfused axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号