首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In follow‐up studies, the disease event time can be subject to left truncation and right censoring. Furthermore, medical advancements have made it possible for patients to be cured of certain types of diseases. In this article, we consider a semiparametric mixture cure model for the regression analysis of left‐truncated and right‐censored data. The model combines a logistic regression for the probability of event occurrence with the class of transformation models for the time of occurrence. We investigate two techniques for estimating model parameters. The first approach is based on martingale estimating equations (EEs). The second approach is based on the conditional likelihood function given truncation variables. The asymptotic properties of both proposed estimators are established. Simulation studies indicate that the conditional maximum‐likelihood estimator (cMLE) performs well while the estimator based on EEs is very unstable even though it is shown to be consistent. This is a special and intriguing phenomenon for the EE approach under cure model. We provide insights into this issue and find that the EE approach can be improved significantly by assigning appropriate weights to the censored observations in the EEs. This finding is useful in overcoming the instability of the EE approach in some more complicated situations, where the likelihood approach is not feasible. We illustrate the proposed estimation procedures by analyzing the age at onset of the occiput‐wall distance event for patients with ankylosing spondylitis.  相似文献   

2.
Median regression with censored cost data   总被引:2,自引:0,他引:2  
Bang H  Tsiatis AA 《Biometrics》2002,58(3):643-649
Because of the skewness of the distribution of medical costs, we consider modeling the median as well as other quantiles when establishing regression relationships to covariates. In many applications, the medical cost data are also right censored. In this article, we propose semiparametric procedures for estimating the parameters in median regression models based on weighted estimating equations when censoring is present. Numerical studies are conducted to show that our estimators perform well with small samples and the resulting inference is reliable in circumstances of practical importance. The methods are applied to a dataset for medical costs of patients with colorectal cancer.  相似文献   

3.
Semiparametric analysis of transformation models with censored data   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
6.
We present an estimator of average regression effect under a non-proportional hazards model, where the regression effect of the covariates on the log hazard ratio changes with time. In the absence of censoring, the new estimate coincides with the usual partial likelihood estimate, both estimates being consistent for a parameter having an interpretation as an average population regression effect. In the presence of an independent censorship, the new estimate is still consistent for this same population parameter, whereas the partial likelihood estimate will converge to a different quantity that depends on censoring. We give an approximation of the population average effect as integral beta(t)dF(t). The new estimate is easy to compute, requiring only minor modifications to existing softwares. We illustrate the use of the average effect estimate on a breast cancer dataset from Institut Curie. The behavior of the estimator, its comparison with the partial likelihood estimate, as well as the approximation by integral beta(t)dF(t)are studied via simulation.  相似文献   

7.
A semiparametric additive regression model for longitudinal data   总被引:2,自引:0,他引:2  
Martinussen  T; Scheike  TH 《Biometrika》1999,86(3):691-702
  相似文献   

8.
9.
10.
Lack of persistence, or erosion, of the regression effect is an alternative to proportional hazards of particular interest in many medical applications. Such a departure from proportional hazards is often the most likely direction in which the model may be inadequate. Questions such as, is the effect of treatment only transitory or to what extent does an initially measured prognostic variable maintain its impact, frequently arise. In the context of a simple changepoint model, we propose a test of the null hypothesis of proportional hazards against the specific alternative of erosion of the regression effect. The particular changepoint model used can be viewed as a first approximation to a more complex reality, an approximation that enables us to avoid specifically modeling the functional form that any erosion might take. Practical guidelines for carrying out the test are provided. The approach is illustrated in the context of a study on risk factors for breast cancer survival.  相似文献   

11.
In clinical trials of chronic diseases such as acquired immunodeficiency syndrome, cancer, or cardiovascular diseases, the concept of quality-adjusted lifetime (QAL) has received more and more attention. In this paper, we consider the problem of how the covariates affect the mean QAL when the data are subject to right censoring. We allow a very general form for the mean model as a function of covariates. Using the idea of inverse probability weighting, we first construct a simple weighted estimating equation for the parameters in our mean model. We then find the form of the most efficient estimating equation, which yields the most efficient estimator for the regression parameters. Since the most efficient estimator depends on the distribution of the health history processes, and thus cannot be estimated nonparametrically, we consider different approaches for improving the efficiency of the simple weighted estimating equation using observed data. The applicability of these methods is demonstrated by both simulation experiments and a data example from a breast cancer clinical trial study.  相似文献   

12.
Mixed effects models with censored data with application to HIV RNA levels   总被引:1,自引:0,他引:1  
Hughes JP 《Biometrics》1999,55(2):625-629
Mixed effects models are often used for estimating fixed effects and variance components in longitudinal studies of continuous data. When the outcome being modelled is a laboratory measurement, however, it may be subject to lower and upper detection limits (i.e., censoring). In this paper, the usual EM estimation procedure for mixed effects models is modified to account for left and/or right censoring.  相似文献   

13.
Sun L  Kim YJ  Sun J 《Biometrics》2004,60(3):637-643
Doubly censored failure time data arise when the survival time of interest is the elapsed time between two related events and observations on occurrences of both events could be censored. Regression analysis of doubly censored data has recently attracted considerable attention and for this a few methods have been proposed (Kim et al., 1993, Biometrics 49, 13-22; Sun et al., 1999, Biometrics 55, 909-914; Pan, 2001, Biometrics 57, 1245-1250). However, all of the methods are based on the proportional hazards model and it is well known that the proportional hazards model may not fit failure time data well sometimes. This article investigates regression analysis of such data using the additive hazards model and an estimating equation approach is proposed for inference about regression parameters of interest. The proposed method can be easily implemented and the properties of the proposed estimates of regression parameters are established. The method is applied to a set of doubly censored data from an AIDS cohort study.  相似文献   

14.
Liang Y  Lu W  Ying Z 《Biometrics》2009,65(2):377-384
Summary .  In analysis of longitudinal data, it is often assumed that observation times are predetermined and are the same across study subjects. Such an assumption, however, is often violated in practice. As a result, the observation times may be highly irregular. It is well known that if the sampling scheme is correlated with the outcome values, the usual statistical analysis may yield bias. In this article, we propose joint modeling and analysis of longitudinal data with possibly informative observation times via latent variables. A two-step estimation procedure is developed for parameter estimation. We show that the resulting estimators are consistent and asymptotically normal, and that the asymptotic variance can be consistently estimated using the bootstrap method. Simulation studies and a real data analysis demonstrate that our method performs well with realistic sample sizes and is appropriate for practical use.  相似文献   

15.
Sun J  Liao Q  Pagano M 《Biometrics》1999,55(3):909-914
In many epidemiological studies, the survival time of interest is the elapsed time between two related events, the originating event and the failure event, and the times of the occurrences of both events are right or interval censored. We discuss the regression analysis of such studies and a simple estimating equation approach is proposed under the proportional hazards model. The method can easily be implemented and does not involve any iteration among unknown parameters, as full likelihood approaches proposed in the literature do. The asymptotic properties of the proposed regression coefficient estimates are derived and an AIDS cohort study is analyzed to illustrate the proposed approach.  相似文献   

16.
Wang CY  Wang N  Wang S 《Biometrics》2000,56(2):487-495
We consider regression analysis when covariate variables are the underlying regression coefficients of another linear mixed model. A naive approach is to use each subject's repeated measurements, which are assumed to follow a linear mixed model, and obtain subject-specific estimated coefficients to replace the covariate variables. However, directly replacing the unobserved covariates in the primary regression by these estimated coefficients may result in a significantly biased estimator. The aforementioned problem can be evaluated as a generalization of the classical additive error model where repeated measures are considered as replicates. To correct for these biases, we investigate a pseudo-expected estimating equation (EEE) estimator, a regression calibration (RC) estimator, and a refined version of the RC estimator. For linear regression, the first two estimators are identical under certain conditions. However, when the primary regression model is a nonlinear model, the RC estimator is usually biased. We thus consider a refined regression calibration estimator whose performance is close to that of the pseudo-EEE estimator but does not require numerical integration. The RC estimator is also extended to the proportional hazards regression model. In addition to the distribution theory, we evaluate the methods through simulation studies. The methods are applied to analyze a real dataset from a child growth study.  相似文献   

17.
Summary .   Motivated by the spatial modeling of aberrant crypt foci (ACF) in colon carcinogenesis, we consider binary data with probabilities modeled as the sum of a nonparametric mean plus a latent Gaussian spatial process that accounts for short-range dependencies. The mean is modeled in a general way using regression splines. The mean function can be viewed as a fixed effect and is estimated with a penalty for regularization. With the latent process viewed as another random effect, the model becomes a generalized linear mixed model. In our motivating data set and other applications, the sample size is too large to easily accommodate maximum likelihood or restricted maximum likelihood estimation (REML), so pairwise likelihood, a special case of composite likelihood, is used instead. We develop an asymptotic theory for models that are sufficiently general to be used in a wide variety of applications, including, but not limited to, the problem that motivated this work. The splines have penalty parameters that must converge to zero asymptotically: we derive theory for this along with a data-driven method for selecting the penalty parameter, a method that is shown in simulations to improve greatly upon standard devices, such as likelihood crossvalidation. Finally, we apply the methods to the data from our experiment ACF. We discover an unexpected location for peak formation of ACF.  相似文献   

18.
If the number of treatments in a network meta‐analysis is large, it may be possible and useful to model the main effect of treatment as random, that is to say as random realizations from a normal distribution of possible treatment effects. This then constitutes a third sort of random effect that may be considered in connection with such analyses. The first and most common models treatment‐by‐trial interaction as being random and the second, rather rarer, models the main effects of trial as being random and thus permits the recovery of intertrial information. Taking the example of a network meta‐analysis of 44 similar treatments in 10 trials, we illustrate how a hierarchical approach to modeling a random main effect of treatment can be used to produce shrunk (toward the overall mean) estimates of effects for individual treatments. As a related problem, we also consider the issue of using a random‐effect model for the within‐trial variances from trial to trial. We provide a number of possible graphical representations of the results and discuss the advantages and disadvantages of such an approach.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号