首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geminate recombination of n-butyl isocyanide to myoglobin   总被引:1,自引:0,他引:1  
Transient optical absorption spectra of myoglobin were measured following photolysis of the n-butyl isocyanide complex with 10-ns laser pulses at room temperature. The data were analyzed by using singular value decomposition to give the kinetics of ligand rebinding and spectral changes. Geminate recombination phases were observed at 30 ns and 1 microsecond following photodissociation. These processes were accompanied by simultaneous changes in the shape of the Soret band which indicate changes in protein conformation. These spectral changes are not present in the geminate recombination of photolyzed complexes of myoglobin with the diatomic ligands oxygen and carbon monoxide. This difference in behavior, as well as the slower overall association rate of n-butyl isocyanide to myoglobin, can be rationalized as arising from distortion of the protein structure by the larger isocyanide ligand along the binding pathway.  相似文献   

2.
Hemoglobin I was isolated from nodules formed on the roots of Parasponia andersonii inoculated with Rhizobium strain CP 283. The rate of oxygen dissociation from Parasponia hemoglobin increases about 12-fold between pH 4 and 7, with apparent pK 6.4, to reach a limiting value of 14.8s-1. The optical spectrum of oxyhemoglobin in the visible region is also dependent on pH with pK near 6.4. The rate constant for oxygen combination with Parasponia hemoglobin increases about 7-8-fold between pH 4 and 7, with apparent pK 5.37, to reach a value of 1.67 X 10(8) M-1 s-1 at pH 7. The optical spectrum of deoxyhemoglobin in the visible region and the rate constant for carbon monoxide combination are also dependent on pH with apparent pK 5.65 and 5.75, respectively. The rate constant for carbon monoxide dissociation is independent of pH. The oxygen affinity of Parasponia hemoglobin, P50 = 0.049 torr at 20 degrees C, calculated from the kinetic constants at pH 7, is very great. At alkaline pH there is a prominent geminate reaction with oxygen and nitric oxide, with both subnanosecond and tens of nanosecond components. These reactions disappear at acid pH, with pK 6.4, and the effective quantum yield is reduced. In general, the reactions of Parasponia hemoglobin with oxygen and carbon monoxide resemble those of soybean leghemoglobin. In each, great oxygen affinity is achieved by unusually rapid oxygen combination together with a moderate rate of oxygen dissociation. We suggest that protonation of a heme-linked group with pK near 6.4 controls many properties of Parasponia oxyhemoglobin, and protonation of a group with pK near 5.5 controls many properties of Parasponia deoxyhemoglobin.  相似文献   

3.
We have investigated the kinetics of geminate carbon monoxide binding to the monomeric component III of Chironomus thummi-thummi erythrocruorin, a protein that undergoes pH-induced conformational changes linked to a pronounced Bohr effect. Measurements were performed from cryogenic temperatures to room temperature in 75% glycerol and either 0.1 M potassium phosphate (pH 7) or 0.1 potassium borate (pH 9) after nanosecond laser photolysis. The distributions of the low temperature activation enthalpy g(H) for geminate ligand binding derived from the kinetic traces are quite narrow and are influenced by temperature both below and above approximately 170 K, the glass transition temperature. The thermal evolution of the CO binding kinetics between approximately 50 K and approximately 170 K indicates the presence of some degree of structural relaxation, even in this temperature range. Above approximately 220 K the width of the g(H) progressively decreases, and at 280 K geminate CO binding becomes exponential in time. Based on a comparison with analogous investigations of the homodimeric hemoglobin from Scapharca inaequivalvis, we propose a link between dynamic properties and functional complexity.  相似文献   

4.
We have measured the rebinding of carbon monoxide (CO) to some distal mutants of myoglobin (Mb) in the time range from 10(-8) to 10(-1) s by flash photolysis, in which the photodissociated CO rebinds to the heme iron without escaping to the solvent water from the protein matrix. We have found that the double mutants [His64-->Val/Val68-->Thr (H64V/V68T) and His64-->Val/Val68-->Ser (H64V/V68S)] have an extremely large geminate yield (70-80%) in water at 5 degreesC, in contrast to the 7% of the geminate yield of wild-type Mb. The CO geminate yields for these two mutants are the largest in those of Mb mutants reported so far, showing that the two mutants have a unique heme environment that favors CO geminate rebinding. Comparing the crystal structures and 1H-NMR and vibrational spectral data of H64V/V68T and H64V/V68S with those of other mutants, we discuss factors that may control the nanosecond geminate CO rebinding and CO migration in the protein matrix.  相似文献   

5.
M Unno  K Ishimori  I Morishima 《Biochemistry》1990,29(44):10199-10205
The bimolecular association reaction of carbon monoxide to human adult hemoglobin at pH 7, 20 degrees C, was examined as a function of pressure up to 1500 bar by means of high-pressure laser photolysis. The apparent quantum yield for a millisecond recombination reaction decreased with pressure, which was attributed to an increase in the fraction of nanosecond geminate recombination reaction. On the basis of the pressure dependence of the recombination rate, the activation volumes at normal pressure for the binding of carbon monoxide to the R- and T-state hemoglobins were determined as -9.0 +/- 0.7 and -31.7 +/- 2.4 cm3 mol-1, respectively. Since the activation volumes for the overall CO association reaction were negative, it seems that the iron-ligand bond formation process mainly contributes to the rate-limiting step for both quaternary structures. The characteristic pressure dependence of the activation volume was observed for the R-state Hb but not for the T-state Hb. At 1000 bar, the activation volume for the R-state Hb was reduced to nearly zero, probably resulting from the contribution of the ligand migration process to the rate-limiting step. The effect of pressure on the activation enthalpy and entropy was also extracted from the data.  相似文献   

6.
Journal of Biological Physics - Hans Frauenfelder’s discovery of conformational substates in studies of myoglobin carbon monoxide geminate rebinding kinetics at cryogenic temperatures (Austin...  相似文献   

7.
The heme-pocket dynamics subsequent to carbon monoxide photolysis from human hemoglobin have been monitored as a function of glycerol-water solvent composition with time-resolved resonance Raman spectroscopy. Prompt (geminate) ligand recombination rates and the transient heme-pocket geometry established within 10 ns after photolysis appear to be largely independent of solvent composition. The rate of relaxation of the transient geometry to an equilibrium deoxy configuration is, however, quite sensitive to solvent composition. These observations suggest that the former processes result from local, internal motions of the protein, while the relaxation dynamics of the proximal heme pocket are predicated upon more global protein motions that are dependent upon solvent viscosity.  相似文献   

8.
Carbon monoxide binding to human hemoglobin A0   总被引:3,自引:0,他引:3  
The carbon monoxide binding curve to human hemoglobin A0 has been measured to high precision in experimental conditions of 600 microM heme, 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid, 0.1 M NaCl, 10 mM inositol hexaphosphate, 1 mM disodium ethylenediaminetetraacetic acid, pH 6.94, and 25 degrees C. Comparison to the oxygen binding curve in the same experimental conditions demonstrates that the two curves are not parallel. This result invalidates Haldane's two laws for the partitioning between carbon monoxide and oxygen to human hemoglobin. The partition coefficient is found to be 263 +/- 27 at high saturation, in agreement with previous studies, but is lowered substantially at low saturation. Although the oxygen and carbon monoxide binding curves are not parallel, both show the population of the triply ligated species to be negligible. The molecular mechanism underlying carbon monoxide binding to hemoglobin is consistent with the allosteric model [Di Cera, E., Robert, C. H., & Gill, S. J. (1987) Biochemistry 26, 4003-4008], which accounts for the negligible contribution of the triply ligated species in the oxygen binding reaction to hemoglobin [Gill, S. J., Di Cera, E., Doyle, M. L., Bishop, G. A., & Robert, C. H. (1987) Biochemistry 26, 3995-4002]. The nature of the different binding properties of carbon monoxide stems largely from the lower partition coefficient of the T state (123 +/- 34), relative to the R state (241 +/- 19).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Flash photolysis kinetics of carbon monoxide hemoglobin show a decrease in the fraction of ligand recombination occurring as geminate when the hemoglobin has fewer ligands bound. Fully saturated samples, normally referred to as R state, show approximately 50% geminate phase, while samples at low saturation (T state) show less than 3%. The latter result was obtained by photolysis of samples with a short delay after stopped flow of solutions of deoxy hemoglobin (Hb) and ligand. The decrease in the fraction of geminate phase was also observed using a double flash technique. The transient mixture of R and T states generated by flash photolysis of Hb-CO was probed with a weaker time-delayed photolysis pulse. The kinetics of both the geminate and bimolecular phases following the second pulse were measured. The fraction geminate signal was least at delays where the maximum proportion of liganded T state tetramer is expected. The biphasic bimolecular process is also an indicator of the allosteric state of Hb. The populations of R and T may be determined from the overall ligand recombination kinetics; however, the analysis is model-dependent. The fraction geminate reaction may provide a rapid measure of the amount of liganded hemes in the R and T states.  相似文献   

10.
Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well.  相似文献   

11.
The dynamics of the enthalpy and volume changes produced in the photodissociation of carbon monoxide from sperm whale myoglobin is investigated by time-resolved photoacoustic calorimetry. The enthalpy and volume changes for the formation of the geminate pair, which occurs within 50 ns of photolysis, are delta H = -2.2 +/- 2.8 kcal/mol and delta V = -10.0 +/- 1.0 mL/mol relative to carboxymyoglobin. The enthalpy and volume changes associated with formation of deoxymyoglobin and solvated carbon monoxide, formed with a half-life of 702 +/- 31 ns at 20 degrees C, are delta H = 14.6 +/- 3.4 kcal/mol and delta V = 5.8 +/- 1.0 mL/mol relative to carboxymyoglobin.  相似文献   

12.
We use the low-temperature recombination kinetics of carbon monoxide with carp hemoglobin to determine that the R and T states of hemoglobin exhibit different low-temperature geminate recombination kinetics. The peak of the fitted Gaussian activation energy spectrum is at 1.5 kcal/mol for R state and 1.8 kcal/mol for T state. The distribution in activation energies is fit well by the Agmon-Hopfield linear strain model. The T state is fit with a stronger elastic constant than R, and has a larger displacement of the protein conformation coordinate than does the R state, indicating that the T state does have a significantly greater rigidity and also stores more strain energy in its conformational states than does R hemoglobin. The pre-exponential in the activation energy spectrum is only a factor of two greater in the R than the T state and the low-temperature activation energy spectrum does not correctly predict the difference in the on rates for R and T states at 300 degrees K, indicating that processes removed from the binding site are important in cooperativity.  相似文献   

13.
Magnetic circular dichroism (MCD) spectra of reduced cytochromes P450 and P420 in equilibrium and non-equilibrium protein conformations are compared at 4.2 K for the 350-800 spectral region. Non-equilibrium forms have been produced by photolysis of CO-complexes at 4.2 K. The differences between MCD spectra of proteins in equilibrium and non-equilibrium conformations, in particular for the visible region, show clearly the structural changes in the heme iron coordination sphere to occur on ligand binding. The comparison of the Soret MCD spectra of reduced proteins in their equilibrium and non-equilibrium forms with those of other high-spin ferrous hemoproteins suggest that mercaptide (RS-) is the protein ligand of the heme iron in reduced P450, as well as in its CO-complex, and that imidazole of histidine is the fifth ligand of the iron both in reduced P420 and its CO-complex. The thermal recombination of the photoproducts with CO have been studied. When temperature rises from 4.2 to 77 K for two hours both proteins have similar temperature characteristics during the recombination processes. The recombination begins at T approximately equal to 10 K and is completed at approximately equal to 50 K. The temperature at which half of the total photolyzed molecules are restored to the CO-form is equal to 25 K. For products of photolysis of CO-complexes of myoglobin and hemoglobin under the same heating conditions these temperatures are equal to 35 and 23 K respectively. Thus, the photoproducts of P450, P420 and hemoglobin have similar parameters of low-temperature recombination and the kinetics of this process is faster than for photodissociated myoglobin.  相似文献   

14.
The study of the thermal evolution of the Soret band in heme proteins has proved to be a useful tool to understand their stereodynamic properties; moreover, it enables one to relate protein matrix fluctuations and functional behavior when carried out in combination with kinetic experiments on carbon monoxide rebinding after flash photolysis. In this work, we report the thermal evolution of the Soret band of deoxy, carbonmonoxy, and nitric oxide derivatives of the cooperative homodimeric Scapharca inaequivalvis hemoglobin in the temperature range 10-300 K and the carbon monoxide rebinding kinetics after flash photolysis in the temperature range 60-200 K. The two sets of results indicate that Scapharca hemoglobin has a very rigid protein structure compared with other hemeproteins. This feature is brought out i) by the absence of nonharmonic contributions to the soft modes coupled to the Soret band in the liganded derivatives, and ii) by the almost "in plane" position of the iron atom in the photoproduct obtained approximately 10(-8) s after dissociating the bound carbon monoxide molecule at 15 K.  相似文献   

15.
It is becoming increasingly apparent that hydrophobic cavities (also referred to as xenon cavities) within proteins have significant functional implications. The potential functional role of these cavities in modulating the internal dynamics of carbon monoxide in myoglobin (Mb) is explored in the present study by using glassy matrices derived from trehalose to limit protein dynamics and to eliminate ligand exchange between the solvent and the protein. By varying the temperature (-15 to 65 degrees C) and humidity for samples of carbonmonoxy myoglobin embedded in trehalose-glass, it is possible to observe a hierarchy of distinct geminate recombination phases that extend from nanosecond to almost seconds that can be directly associated with rebinding from specific hydrophobic cavities. The use of mutant forms of Mb reveals the role of key residues in modulating ligand access between these cavities and the distal hemepocket.  相似文献   

16.
Cryogenic stabilization of myoglobin photoproducts   总被引:4,自引:0,他引:4  
The low frequency resonance Raman spectra of photodissociated carbon monoxymyoglobin at cryogenic temperatures (4-77 K) differ from those of deoxymyoglobin. Intensity differences occur in several low frequency porphyrin modes, and intensity and frequency differences occur in the iron-histidine stretching mode. This mode appears at about 225 cm-1 in deoxymyoglobin. At the lowest temperature studied, approximately 4 K, the frequency of the iron-histidine stretching mode in the photoproduct is approximately 233 cm-1, and the intensity is very low. When the temperature of the photoproduct is increased, the intensity of the mode increases, but its frequency is unchanged. The differences between the photoproduct and the deoxy preparation persist to 77 K, the highest temperature studied, and are independent of whether samples are frozen in phosphate buffer or a 50:50 ethylene glycol/phosphate buffer mixture. It is proposed that the frequency of the iron-histidine stretching mode is governed by the tilt angle of the histidine with respect to the normal to the heme plane, and the intensity of the mode is governed by the overlap between the sigma orbital of the iron-histidine bond and the pi orbital of the porphyrin macrocycle. This model can account for differences between the resonance Raman spectra of the photoproduct and the deoxy preparations of both hemoglobin and myoglobin. Furthermore, by considering the F-helix motions in going from 6-coordinate to 5-coordinate hemoglobin and myoglobin, the heme relaxation of these proteins at room temperature with 10-ns pulses can be explained. Based on the findings reported here, low temperature relaxation pathways for both hemoglobin and myoglobin are proposed.  相似文献   

17.
The geminate ligand recombination reactions of photolyzed carbonmonoxyhemoglobin were studied in a nanosecond double-excitation-pulse time-resolved absorption experiment. The second laser pulse, delayed by intervals as long as 400 ns after the first, provided a measure of the geminate kinetics by rephotolyzing ligands that have recombined during the delay time. The peak-to-trough magnitude of the Soret band photolysis difference spectrum measured as a function of the delay between excitation pulses showed that the room temperature kinetics of geminate recombination in adult human hemoglobin are best described by two exponential processes, with lifetimes of 36 and 162 ns. The relative amounts of bimolecular recombination to T- and R-state hemoglobins and the temperature dependence of the submicrosecond kinetics between 283 and 323 K are also consistent with biexponential kinetics for geminate recombination. These results are discussed in terms of two models: geminate recombination kinetics modulated by concurrent protein relaxation and heterogeneous kinetics arising from alpha and beta chain differences.  相似文献   

18.
19.
Laser flash photolysis technique was used to study zinc and cadmium ion effects on bimolecular and nanosecond geminate molecular oxygen (O(2)) rebinding to horse heart myoglobin. Time courses for geminate recombination are analyzed in terms of a three-step, side path model. In the presence of metal ions, the greatest changes are observed in the rate constant of the O(2) rebinding from within the primary docking site and the rate constant of the O(2) migration from the primary site to the secondary xenon docking sites. The study revealed that modulation of the myoglobin affinity for O(2) by zinc and cadmium occurs at the level of the innermost barrier controlling O(2) rebinding from within the primary docking site. Sets of the calculated rate constants provide a basis for an interpretation of metal ion effects on the myoglobin structure. Overall, the results demonstrate that the metal ions binding to myoglobin gives rise to an increase in the population of the "open" distal pocket protein conformation.  相似文献   

20.
The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (K(D) < 1 micro M) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and approximately 100 micro M(-1) respectively, indicate that they are not capable of facilitating oxygen transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号