首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Characterization of the umu-complementing operon from R391.   总被引:1,自引:0,他引:1       下载免费PDF全文
In addition to conferring resistances to antibiotics and heavy metals, certain R factors carry genes involved in mutagenic DNA repair. These plasmid-encoded genes are structurally and functionally related to the chromosomally encoded umuDC genes of Escherichia coli and Salmonella typhimurium. Three such plasmid operons, mucAB, impCAB, and samAB, have been characterized at the molecular level. Recently, we have identified three additional umu-complementing operons from IncJ plasmid R391 and IncL/M plasmids R446b and R471a. We report here the molecular characterization of the R391 umu-complementing operon. The nucleotide sequence of the minimal R plasmid umu-complementing (rum) region revealed an operon of two genes, rumA(R391) and rumB(R391), with an upstream regulatory signal strongly resembling LexA-binding sites. Phylogenetic analysis revealed that the RumAB(R391) proteins are approximately equally diverged in sequence from the chromosomal UmuDC proteins and the other plasmid-encoded Umu-like proteins and represent a new subfamily. Genetic characterization of the rumAB(R391) operon revealed that in recA+ and recA1730 backgrounds, the rumAB(R391) operon was phenotypically indistinguishable from mucAB. In contrast, however, the rumAB(R391) operon gave levels of mutagenesis that were intermediate between those given by mucAB and umuDC in a recA430 strain. The latter phenotype was shown to correlate with the reduced posttranslational processing of the RumA(R391) protein to its mutagenically active form, RumA'(R391). Thus, the rumAB(R391) operon appears to possess characteristics that are reminiscent of both chromosome and plasmid-encoded umu-like operons.  相似文献   

2.
Most mutagenesis by UV and many chemicals in Escherichia coli requires the products of the umuDC operon or an analogous plasmid-derived operon mucAB. Activated RecA protein is also required for, or enhances, this process. MucA and UmuD proteins share homology with the LexA protein, suggesting that they might interact with the RecA protein as LexA does. We used oligonucleotide-directed mutagenesis to alter a site in MucA homologous to the Ala-Gly cleavage site of LexA. The mutation, termed mucA101(Glu26), results in a change of Gly26 of MucA to Glu26. A lexA(Def) recA441 umuC122::Tn5 strain carrying a mucA101(Glu26)B+ plasmid did not exhibit the greatly increased frequency of spontaneous mutagenesis in response to RecA activation that a strain carrying a mucA+B+ plasmid did but retained a basal recA-dependent ability to confer increased spontaneous mutagenesis that was independent of the state of RecA activation. These results are consistent with a model in which RecA plays two distinct roles in mutagenesis apart from its role in the cleavage of LexA. A pBR322-derived plasmid carrying mucA+B+, but not one carrying mucA101(Glu26)B+, inhibited the UV induction of SOS genes, suggesting that MucA+ and MucA(Glu26) proteins may have different abilities to compete with LexA for activated RecA protein. The spectrum of UV-induced mutagenesis was also altered in strains carrying the mucA101(Glu26) mutation. These results are consistent with the hypothesis that activated RecA protein interacts with wild-type MucA protein, possibly promoting proteolytic cleavage, and that this interaction is responsible for facilitating certain mutagenic processes.  相似文献   

3.
D Lodwick  D Owen    P Strike 《Nucleic acids research》1990,18(17):5045-5050
The sequence of the imp operon of the plasmid TP110 (which belongs to the Incl1 incompatibility group) has been determined, and is shown to contain three open reading frames. This operon, involved in UV protection and mutation, is functionally analogous to the umuDC operon of E. coli and the mucAB operon of the plasmid pKM101, which belongs to the quite unrelated IncN incompatibility group. The umu and muc operons however contain only two open reading frames, coding for proteins of approximately 16kD and 46kD. The high degree of homology between the two 16kD proteins (UmuD and MucA) and between the two 46kD proteins (UmuC and MucB) clearly shows their relatedness. This is shown also to extend to the imp gene products, with ImpA sharing homology with UmuD and MucA, and ImpB sharing homology with UmuC and MucB. However, the two imp genes are preceded in the operon by a third gene, impC, which encodes a small protein of 9.5kD and which has no equivalent in the umu and muc operons.  相似文献   

4.
Summary The mucAB operon carried on plasmid pKM101, which is an analogue of the umuDC operon of Escherichia coli, is involved in UV mutagenesis and mutagenesis induced by many chemicals. Mutagenesis dependent on either the umuDC or mucAB operon requires the function of the recA gene and is called SOS mutagenesis. By treating the cell with agents that damage DNA, RecA protein is activated by conversion into a form (RecA*) that mediates proteolytic cleavage of the LexA repressor and derepresses the SOS genes including mucAB. Since UmuD protein is proteolytically processed to an active form (UmuD*) in a RecA*-dependent fashion, and MucA shares extensive amino acid homology with UmuD, we examined whether MucA is similarly processed in the cell, using antiserum against a LacZ-MucA fusion protein. Like UmuD, MucA protein is indeed proteolytically processed in a RecA*-dependent fashion. In recA430 strains, MucAB but not UmuDC can mediate UV mutagenesis. However, MucA was not processed in the recA430 cells treated with mitomycin C. We constructed, by site-directed mutagenesis, several mutant mucA genes that encode MucA proteins with alterations in the amino acids flanking the putative cleavage site (Ala25-Gly26). MucA(Cys25) was processed and was as mutagenically active as wild-type MucA; MucA(Asp26) and MucA(Cys25,Asp26) were not processed, and were mutagenically inactive; MucA-(Thr25) was not processed, but was mutagenically as active as wild-type MucA. The mutant mucA gene that encoded the putative cleavage product of MucA was as active as mucA + in UV mutagenesis. These results raise the possibility that both the nascent MucA and the processed product are active in mutagenesis.  相似文献   

5.
Multicopy plasmids carrying either the umuDC operon of Escherichia coli or its analog mucAB operon, were introduced into Ames Salmonella strains in order to analyze the influence of UmuDC and MucAB proteins on repair and mutability after UV irradiation. It was found that in uvr+ bacteria, plasmid pICV80:mucAB increased the frequency of UV-induced His+ revertants whereas pSE117:umuDC caused a smaller increase in UV mutagenesis. In delta uvrB bacteria, the protective role of pSE117 against UV killing was weak, and there was a great reduction in the mutant yield. In contrast, in these cells, pICV80 led to a large increase in both cell survival and mutation frequency. These results suggest that in Salmonella, as in E. coli, MucAB proteins mediate UV mutagenesis more efficiently than UmuDC proteins do. Plasmid pICV84:umuD+ C- significantly increased UV mutagenesis of TA2659: delta uvrB cells whereas in them, pICV77:mucA+ B- had no effect on mutability indicating the presence in Salmonella TA2659 of a gene functionally homologous to umuC.  相似文献   

6.
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD'. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD' protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD'-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD' functions in vivo as well as examined HumD's physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive DeltaumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD', HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD'-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo.  相似文献   

7.
The umuDC operon of Escherichia coli, a member of the SOS regulon, is required for SOS mutagenesis. Following the posttranslational processing of UmuD to UmuD' by RecA-mediated cleavage, UmuD' acts in concert with UmuC, RecA, and DNA polymerase III to facilitate the process of translesion synthesis, which results in the introduction of mutations. Constitutive expression of the umuDC operon causes an inhibition of growth at 30 degrees C (cold sensitivity). The umuDC-dependent physiological phenomenon manifested as cold-sensitive growth is shown to differ from SOS mutagenesis in two respects. Intact UmuD, the form inactive in SOS mutagenesis, confers a significantly higher degree of cold sensitivity in combination with UmUC than does UmuD'. In addition, umuDC-mediated cold sensitivity, unlike SOS mutagenesis, does not require recA function. Since the RecA protein mediates the autodigestion of UnmD to UmuD', this finding supports the conclusion that intact UmuD is capable of conferring cold sensitivity in the presence of UmuC. The degree of inhibition of growth at 30 degrees C correlates with the levels of UmuD and UmuC, which are the only two SOS-regulated proteins required to observe cold sensitivity. Analysis of the cellular morphology of strains that exhibit cold sensitivity for growth led to the finding that constitutive expression of the umuDC operon causes a novel form of sulA- and sfiC-independent filamentation at 30 degrees C. This filamentation is observed in a strain constitutively expressing the single, chromosomal copy of umuDC and can be suppressed by overexpression of the ftsQAZ operon.  相似文献   

8.
Summary Two multicopy plasmids carrying either the umuDC or the mucAB operon were used to compare the efficiency of UmuDC and MucAB proteins in UV mutagenesis of Escherichia coli K12. It was found that in recA + uvr +bacteria, plasmid pIC80, mucAB +mediated UV mutagenesis more efficiently than did plasmid pSE117, umuDC +. A similar result was obtained in lexA51(Def) cells, excluding the possibility that this was due to a differential regulation by LexA of the umuDC and mucAB operons. We conclude that some structural characteristic of the UmuDC and MucAB proteins determines their different efficiency in UV mutagenesis. This characteristic could be also responsible for the observation that in the recA430 mutant, pIC80 but no pSE117 can mediate UV mutagenesis. In the recA142 mutant, pIC80 also promoted UV mutagenesis more efficiently than pSE117. In this mutant, the recombination proficiency, the protease activity toward LexA and the mutation frequency were increased by the presence of adenine in the medium. In recA + uvrB5 bacteria, plasmid pSE117,umuDC caused both an increase in UV sensitivity as well as a reduction in the mutation frequency. These nagative effects resulting from the overproduction of UmuDC proteins were higher in recA142 uvrB5 than in recA + uvrB5 cells. In contrast, overproduction of MucAB proteins in excision-deficient bacteria containing pIC80 led to a large increase in the mutation frequency. We suggest that the functional differences between UmuDC and MucAB proteins might be due to their different dependence on the direct role of RecA protease in UV mutagenesis.  相似文献   

9.
The actions of UmuDC and RecA proteins, respectively in SOS mutagenesis are studied here with the following experimental strategy. We used lexAl (Ind) bacteria to maintain all SOS proteins at their basal concentrations and then selectively increased the concentration of either UmuDC or RecA protein. For this purpose, we isolated operator-constitutive mutations o c in the umuDC and umuD'C operons and also used the o 98 c -recA mutation. The o 1 c -umuDC mutation prevents LexA repressor from binding to the operator and improves the Pribnow box consensus sequence. As a result, 5000 UmuD and 500 UmuC molecules per cell were produced in lexAl bacteria. This concentration is sufficient to restore SOS mutagenesis. The level of RecA protein present in the repressed state promoted full UmuD cleavage. Overproduction of RecA alone did not promote SOS mutagenesis. Increasing the level of RecA in the presence of high concentrations of UmuDC proteins has no further effect on SOS mutgenesis. We conclude that, after DNA damage, umuDC is the only SOS operon that must be induced in Escherichia coli to promote SOS mutagenesis.  相似文献   

10.
The mutagenic actions of many chemicals depend on the activities of bacterial "mutagenesis proteins", which allow replicative bypass of DNA lesions. Genes encoding these proteins occur on bacterial chromosomes and plasmids, often in the form of an operon (such as umuDC or mucAB) encoding two proteins. Many bacterial strains used in mutagenicity testing carry mutagenesis protein genes borne on plasmids, such as pKM101. Our objective was to introduce mutagenesis protein function into Escherichia coli strain DJ4309. This strain expresses recombinant human cytochrome P450 1A2 and NADPH-P450 reductase and carries out the metabolic conversion of aromatic and heterocyclic amines into DNA-reactive mutagens. We discovered that many mutagenesis-protein plasmids severely inhibit the response of strain DJ4309 to 2-amino-3,4-dimethylimid-azo[4,5-f]quinoline (MeIQ), a typical heterocyclic amine mutagen. Among many plasmids examined, one, pGY8294, a pSC101 derivative carrying the umuDC operon, did not inhibit MeIQ mutagenesis. Strain DJ4309 pGY8294 expresses active mutagenesis proteins, as shown by its response to mutagens such as 1-nitropyrene and 4-nitroquinoline 1-oxide (4-NQO), and is as sensitive as the parent strain DJ4309 to P450-dependent mutagens, such as MeIQ and 1-aminopyrene.  相似文献   

11.
Mutagenic DNA repair in enterobacteria.   总被引:10,自引:7,他引:3       下载免费PDF全文
S G Sedgwick  C Ho    R Woodgate 《Journal of bacteriology》1991,173(18):5604-5611
Sixteen species of enterobacteria have been screened for mutagenic DNA repair activity. In Escherichia coli, mutagenic DNA repair is encoded by the umuDC operon. Synthesis of UmuD and UmuC proteins is induced as part of the SOS response to DNA damage, and after induction, the UmuD protein undergoes an autocatalytic cleavage to produce the carboxy-terminal UmuD' fragment needed for induced mutagenesis. The presence of a similar system in other species was examined by using a combined approach of inducible-mutagenesis assays, cross-reactivity to E. coli UmuD and UmuD' antibodies to test for induction and cleavage of UmuD-like proteins, and hybridization with E. coli and Salmonella typhimurium umu DNA probes to map umu-like genes. The results indicate a more widespread distribution of mutagenic DNA repair in other species than was previously thought. They also show that umu loci can be more complex in other species than in E. coli. Differences in UV-induced mutability of more than 200-fold were seen between different species of enteric bacteria and even between multiple natural isolates of E. coli, and yet some of the species which display a poorly mutable phenotype still have umu-like genes and proteins. It is suggested that umDC genes can be curtailed in their mutagenic activities but that they may still participate in some other, unknown process which provides the continued stimulus for their retention.  相似文献   

12.
To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+. With respect to other RecA functions, recA1730 was recessive to recA+. This demonstrates that RecA protein has an additional role in mutagenesis beside mediating the cleavage of LexA and UmuD proteins.  相似文献   

13.
A RecA protein mutant deficient in its interaction with the UmuDC complex   总被引:13,自引:0,他引:13  
recA1730 is a dominant point mutation preventing SOS mutagenesis. We demonstrate here that: i) RecA1730 fails to produce mutagenesis even though UmuD' is formed, ii) recA1730, when complemented by recA+, can cleave LexA protein and it displays a UmuDC- phenotype in spite of adequate concentrations of matured UmuD' and UmuC proteins, iii) the Mut- phenotype caused by RecA1730 is partially alleviated by MucAB proteins, functional analogs of UmuDC. To explain the mutant phenotype, we postulate that recA1730 impairs a RecA function required for the positioning of the UmuD'C complex within the replisome at the site of lesions.  相似文献   

14.
The actions of UmuDC and RecA proteins, respectively in SOS mutagenesis are studied here with the following experimental strategy. We used lexAl (Ind?) bacteria to maintain all SOS proteins at their basal concentrations and then selectively increased the concentration of either UmuDC or RecA protein. For this purpose, we isolated operator-constitutive mutations o c in the umuDC and umuD'C operons and also used the o 98 c -recA mutation. The o 1 c -umuDC mutation prevents LexA repressor from binding to the operator and improves the Pribnow box consensus sequence. As a result, 5000 UmuD and 500 UmuC molecules per cell were produced in lexAl bacteria. This concentration is sufficient to restore SOS mutagenesis. The level of RecA protein present in the repressed state promoted full UmuD cleavage. Overproduction of RecA alone did not promote SOS mutagenesis. Increasing the level of RecA in the presence of high concentrations of UmuDC proteins has no further effect on SOS mutgenesis. We conclude that, after DNA damage, umuDC is the only SOS operon that must be induced in Escherichia coli to promote SOS mutagenesis.  相似文献   

15.
In Escherichia coli, efficient mutagenesis by UV requires the umuDC operon. A deficiency in umuDC activity is believed to be responsible for the relatively weak UV mutability of Salmonella typhimurium LT2 compared with that of E. coli. To begin evaluating this hypothesis and the evolutionary relationships among umuDC-related sequences, we cloned and sequenced the S. typhimurium umuDC operon. S. typhimurium umuDC restored mutability to umuD and umuC mutants of E. coli. DNA sequence analysis of 2,497 base pairs (bp) identified two nonoverlapping open reading frames spanning 1,691 bp that were were 67 and 72% identical at the nucleotide sequence level to the umuD and umuC sequences, respectively, from E. coli. The sequences encoded proteins whose deduced primary structures were 73 and 84% identical to the E. coli umuD and umuC gene products, respectively. The two bacterial umuDC sequences were more similar to each other than to mucAB, a plasmid-borne umuDC homolog. The umuD product retained the Cys-24--Gly-25, Ser-60, and Lys-97 amino acid residues believed to be critical for RecA-mediated proteolytic activation of UmuD. The presence of a LexA box 17 bp upstream from the UmuD initiation codon suggests that this operon is a member of an SOS regulon. Mu d-P22 inserts were used to locate the S. typhimurium umuDC operon to a region between 35.9 and 40 min on the S. typhimurium chromosome. In E. coli, umuDC is located at 26 min. The umuDC locus in S. typhimurium thus appears to be near one end of a chromosomal inversion that distinguishes gene order in the 25- to 35-min regions of the E. coli and S. typhimurium chromosomes. It is likely, therefore, that the umuDC operon was present in a common ancestor before S. typhimurium and E. coli diverged approximately 150 million years ago. These results provide new information for investigating the structure, function, and evolutionary origins of umuDC and for exploring the genetic basis for the mutability differences between S. typhimurium and E. coli.  相似文献   

16.
Recovery of aflatoxin B1-induced base substitution mutations in Escherichia coli was almost completely dependent on the presence of the SOS-mutagenesis-enhancing operon mucAB+; the normal E. coli analog, umuDC+, was not sufficient. Yet aflatoxin B1 induced the SOS response, including the umuDC operon, as well as did UV light. Neither preinduction of the SOS response nor the presence of additional copies of umuDC+ allowed the recovery of aflatoxin B1-induced base substitutions. Thus, the premutagenic DNA lesions induced by aflatoxin B1 reveal a functional difference between UmuDC and MucAB. We estimate that in the presence of MucAB the probability that aflatoxin B1-induced DNA lesions will be converted into mutations is increased at least 10-fold.  相似文献   

17.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

18.
Substitution of UmuD' for UmuD does not affect SOS mutagenesis   总被引:1,自引:0,他引:1  
In order to study the role of UmuDC proteins in SOS mutagenesis, we have constructed new Escherichia coli K-12 strains to avoid i) over-production of Umu proteins, ii) the formation of unwanted mixed plasmid and chromosomal Umu proteins upon complementation. We inserted a mini-kan transposon into the umuD gene carried on a plasmid. The insertion at codon 24 ends protein translation and has a polar effect on the expression of the downstream umuC gene. We transferred umuD24 mutation to the E coli chromosome. In parallel, we subcloned umuD+ umuC+ or umuD' umuC+ genes into pSC101, a low copy number plasmid. In a host with the chromosomal umuD24 mutation, plasmids umuD+ umuC+ or umuD' umuC+ produced elevated resistance to UV light and increased SOS mutagenesis related to a gene dosage of about 3. UV mutagenesis was as high in umuD' umuC+ hosts devoid of UmuD+ protein as in umuD+ umuC+ hosts. UmuD' protein, the maturated form of UmuD, can substitute for UmuD in SOS mutagenesis.  相似文献   

19.
Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The DNA which can restore UV mutability to a umuD44 strain and to a umuC122::Tn5 strain of E. coli has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the cloned DNA potentially encoded proteins with calculated molecular weights of 15,523 and 47,726 and was an analog of the E. coli umuDC operon. We have termed this cloned DNA the samAB (for Salmonella mutagenesis) operon and tentatively referred to the umuDC operon of S. typhimurium LT2 (C. M. Smith, W. H. Koch, S. B. Franklin, P. L. Foster, T. A. Cebula, and E. Eisenstadt, J. Bacteriol. 172:4964-4978, 1990; S. M. Thomas, H. M. Crowne, S. C. Pidsley, and S. G. Sedgwick, J. Bacteriol. 172:4979-4987, 1990) as the umuDCST operon. The samAB operon is 40% diverged from the umuDCST operon at the nucleotide level. Among five umuDC-like operons so far sequenced, i.e., the samAB, umuDCST, mucAB, impAB, and E. coli umuDC operons, the samAB operon shows the highest similarity to the impAB operon of TP110 plasmid while the umuDCST operon shows the highest similarity to the E. coli umuDC operon. Southern hybridization experiments indicated that (i) S. typhimurium LT2 and TA1538 had both the samAB and the umuDCST operons and (ii) the samAB operon was located in a 60-MDa cryptic plasmid. The umuDCST operon is present in the chromosome. The presence of the two homologous but different umuDC operons may be involved in the poor mutability of S. typhimurium by UV and chemical mutagens.  相似文献   

20.
The GroE proteins of Escherichia coli are heat shock proteins which have also been shown to be molecular chaperone proteins. Our previous work has shown that the GroE proteins of E. coli are required for UV mutagenesis. This process requires the umuDC genes which are regulated by the SOS regulon. As part of the UV mutagenesis pathway, the product of the umuD gene, UmuD, is posttranslationally cleaved to yield the active form, UmuD'. In order to investigate what role the groE gene products play in UV mutagenesis, we measured UV mutagenesis in groE+ and groE strains which were expressing either the umuDC or umuD'C genes. We found that expression of umuD' instead of umuD will suppress the nonmutability conferred by the groE mutations. However, cleavage of UmuD to UmuD' is unaffected by mutations at the groE locus. Instead we found that the presence of UmuD' increased the stability of UmuC in groE strains. In addition, we obtained evidence which indicates that GroEL interacts directly with UmuC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号