首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a novel peroxisomal targeting sequence (PTS) at the extreme COOH terminus of human catalase. The last four amino acids of this protein (-KANL) are necessary and sufficient to effect targeting to peroxisomes in both human fibroblasts and Saccharomyces cerevisiae, when appended to the COOH terminus of the reporter protein, chloramphenicol acetyl transferase. However, this PTS differs from the extensive family of COOH-terminal PTS tripeptides collectively termed PTS1 in two major aspects. First, the presence of the uncharged amino acid, asparagine, at the penultimate residue of the human catalase PTS is highly unusual, in that a basic residue at this position has been previously found to be a common and critical feature of PTS1 signals. Nonetheless, this asparagine residue appears to constitute an important component of the catalase PTS, in that replacement with aspartate abolished peroxisomal targeting (as did deletion of the COOH-terminal four residues). Second, the human catalase PTS comprises more than the COOH-terminal three amino acids, in that COOH-terminal-ANL cannot functionally replace the PTS1 signal-SKL in targeting a chloramphenicol acetyl transferase fusion protein to peroxisomes. The critical nature of the fourth residue from the COOH terminus of the catalase PTS (lysine) is emphasized by the fact that substitution of this residue with a variety of other amino acids abolished or reduced peroxisomal targeting. Targeting was not reduced when this lysine was replaced with arginine, suggesting that a basic amino acid at this position is required for maximal functional activity of this PTS. In spite of these unusual features, human catalase is sorted by the PTS1 pathway, both in yeast and human cells. Disruption of the PAS10 gene encoding the S. cerevisiae PTS1 receptor resulted in a cytosolic location of chloramphenicol acetyl transferase appended with the human catalase PTS, as did expression of this protein in cells from a neonatal adrenoleukodystrophy patient specifically defective in PTS1 import. Furthermore, through the use of the two-hybrid system, it was demonstrated that both the PAS10 gene product (Pas10p) and the human PTS1 receptor can interact with the COOH-terminal region of human catalase, but that this interaction is abolished by substitutions at the penultimate residue (asparagine-to- aspartate) and at the fourth residue from the COOH terminus (lysine-to-glycine) which abolish PTS functionality. We have found no evidence of additional targeting information elsewhere in the human catalase protein. An internal tripeptide (-SHL-, which conforms to the mammalian PTS1 consensus) located nine to eleven residues from the COOH terminus has been excluded as a functional PTS. Additionally, in contrast to the situation for S. cerevisiae catalase A, which contains an internal PTS in addition to a COOH-terminal PTS1, human catalase lacks such a redundant PTS, as evidenced by the exclusive cytosolic location of human catalase mutated in the COOH-terminal PTS. Consistent with this species difference, fusions between catalase A and human catalase which include the catalase A internal PTS are targeted, at least in part, to peroxisomes regardless of whether the COOH-terminal human catalase PTS is intact.  相似文献   

2.
Cao C  Leng Y  Liu X  Yi Y  Li P  Kufe D 《Biochemistry》2003,42(35):10348-10353
Catalase is a major effector in the defense of aerobic cells against oxidative stress. Recent studies have shown that catalase activity is stimulated by the c-Abl and Arg tyrosine kinases. Little, however, is otherwise known about the mechanisms responsible for catalase regulation. The present work demonstrates that mouse cells deficient in both c-Abl and Arg exhibit increased catalase stability. The results also show that catalase is subject to ubiquitination and degradation by the 26S proteosome. Significantly, ubiquitination of catalase is dependent on c-Abl- and Arg-mediated phosphorylation of catalase on both Y231 and Y386. In concert with these results, human 293 cells expressing catalase mutated at Y231 and Y386 exhibit attenuated levels of reactive oxygen species when exposed to hydrogen peroxide. These findings indicate that, in addition to stimulating catalase activity, c-Abl and Arg promote catalase degradation in the oxidative stress response.  相似文献   

3.
In a variety of disorders, endothelial cells are exposed to high levels of oxidants, generated within the cells and/or consequent to local inflammation. In the context of the sensitivity of endothelial cells to oxidant stress, particularly related to H2O2, we have designed a replication deficient recombinant adenovirus containing the human catalase cDNA (AdCL) to transfer the catalase cDNA to the endothelial cells, in order to augment intracellular anti-H2O2 protection. Human umbilical vein endothelial cells that were not infected or infected with control adenovirus maintained low levels of catalase mRNA. Endothelial cells infected with AdCL expressed AdCL-driven exogenous catalase mRNA, as early as 24 hr and at least for 7 days. Catalase protein levels were increased significantly over controls in cells infected with AdCL, as were catalase activity levels, with catalase activity correlated closely with levels of catalase protein. Importantly, when the endothelial cells were exposed to 500 microM H2O2, all the AdCL infected endothelial cells survived, compared to only 37% of the control cells. Thus, a recombinant adenovirus containing the human catalase cDNA is able to infect human endothelial cells in vitro and express high levels of functional intracellular catalase, protecting the cells against H2O2-mediated oxidant stress. These observations support the feasibility of the transfer of catalase cDNA to human endothelium to protect against oxidant injury.  相似文献   

4.
5.
Catalase is one of the antioxidant enzymes and is involved in many pathophysiologic processes and human diseases. This study focused on high-level expression and purification of recombinant catalase in Pichia pastoris. The cDNA encoding catalase was cloned by RT-PCR from Fetal liver of Homo sapiens. After PCR and construction of expression vector pPIC9K-CAT, human catalase was expressed highly in P. pastoris yeast SMD1168 and secreted into the culture medium. The secreted catalase was purified to a purity of 95% by ammonium sulfate fractionation, anionic exchange-chromatography, and Macro-prep Ceramic Hydroxyapatite with a overall yield of 60%. This study provides a new method for large-scale expression and purification of recombinant protein catalase.  相似文献   

6.
A specific interaction of human erythrocyte catalase with the inner surface of the red cell membrane was demonstrated. The dependency of catalase affinity on pH and ionic strength implies that the interaction is dominated by electrostatic forces. Scatchard analysis of the binding at pH 6.0 and 5 mm Mes buffer reveals a single class of approximately 106 binding sites/ghost with an association constant of 2.5 × 107m?1. The membrane-bound catalase retains its enzymatic activity. Competition binding studies of catalase and other proteins known to associate with the membrane inner surface were carried out. It was found that the binding of catalase is inhibited by aldolase, glyceraldehyde-3-phosphate dehydrogenase as well as by hemoglobin. The advantage of membrane-bound catalase in protection of the cell membrane against peroxidative damages is discussed.  相似文献   

7.
Summary Leukemic cells with reciprocal translocations involving 11p13 and 14q13 were obtained from two patients with T-cell acute lymphoblastic leukemia and fused with mouse Ltk- cells. DNA from independent hybrid clones was screened by Southern blot and hybridization to molecular probes for the human catalase and Ha-ras-1 genes. Several clones showed segregation of these two genes, indicating the presence of either the der 11 or der 14 human chromosomes. When DNA from these hybrid clones was examined for the presence of the human genes for calcitonin and γ-globin, both genes were found to segregate with the Ha-ras-1 gene and the der14 chromosome indicating that they lie distal to catalase. When the hybrid clones were examined for the presence of human lactate dehydrogenase A (LDH A) activity, only those clones containing the der14 chromosome expressed activity indicating that the LDH A gene is also distal to catalase on the short arm of chromosome 11.  相似文献   

8.
9.
The specific catalase activity of human diploid cell strains increases with progressive growth of the culture, and falls again following subculture. Although the increase is small, it is readily demonstrable, and is exponential with time. The response of catalase activity to proggressive growth of the culture was studied in three abnormal human cell lines. A diploid cell strain, developed from a patient homozygous for the gene causing acatalasia I, had no detectable catalase activity throughout the life cycle of the culture. Another diploid cell strain, developed from a patient homozygous for the gene causing acatalasia II, had about 5% normal catalase activity, but the proportionate increase in specific activity as the culture grew was the same as for normal cells. Thus the mutation causing acatalasia II does not change the responsiveness of the cell in terms of catalase activity to progressive growth of the culture. The behavior of a heteroploid line was similar to that of the normal diploid strains, but when the growth of the heteroploid cultures reached a plateau, their population densities were four times higher than those of the diploid strains and they had about twice the specific catalase activity.  相似文献   

10.
N-beta-Alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine (5-S-GAD) exhibits selective cytotoxicity toward certain human tumor cell lines. 5-S-GAD has been shown to release hydrogen peroxide autonomously. Hydrogen peroxide is converted to water and oxygen by catalase. The purpose of this study is to determine whether or not 5-S-GAD exhibits selective cytotoxicity toward tumor cells with low catalase levels, but not toward ones with high catalase levels. We transfected MDA-MB-435S cells, which are sensitive to 5-S-GAD, with catalase cDNA to establish high catalase producer cells, and then examined their 5-S-GAD sensitivity. Similarly, we repressed catalase expression in T47D cells, which are insensitive to 5-S-GAD, by catalase RNA interference to create low catalase producer cells, and then examined their 5-S-GAD sensitivity. We show that the overexpression of catalase made MDA-MB-435S cells insensitive to 5-S-GAD, whereas the suppression of catalase made T47D cells sensitive to 5-S-GAD. The cellular catalase level was found to be crucial for cell sensitivity to 5-S-GAD.  相似文献   

11.
The relatively small number of paramagnetic species and the high concentration of catalase in mammalian liver and blood make it possible to directly study this enzyme in frozen whole tissue. The EPR spectra of catalase are dependent on the heme environment and in human blood only catalase A, gxy = 6.48, 5.36 is observed whereas in liver a second spectrum, catalase B, gxy = 6.80, 5.07 can also be seen. Using rapid freeze techniques it has been shown that in rat liver catalase A corresponds to the in vivo steady state and that after death this is largely converted into catalase B. Data from the perfusion of rat livers with oxygenated and deoxygenated blood and dextran solutions together with results from in vitro studies of catalase are interpreted as indicating that catalase B results from the interaction of catalase with an organic acid, most probably formic acid, that the acid is a peroxidative substrate for catalase in vivo and that peroxidation of the acid is not the major role for catalase in rat liver. Catalase binding with other small molecules in intact liver has been demonstrated by perfusion with nitrite-containing dextrans and by intraperitoneal injection of 3-amino-1,2,4-triazole.  相似文献   

12.
A method for isolation of catalase from small volumes of murine red blood cells is described. The purified enzyme had a specific activity of 25,000 IU/mg protein and was judged to be homogeneous by polyacrylamide and sodium dodecyl sulphate electrophoresis. The specific activity of the isolated murine erythrocyte catalase is approximately 14–25% that of human erythrocyte catalase isolated by the method described.  相似文献   

13.
Isolation and characterization of the human catalase gene.   总被引:19,自引:3,他引:16       下载免费PDF全文
Catalase is a tetrameric hemoprotein which degrades H2O2. Recombinant phage clones containing the human catalase gene have been isolated and characterized. The gene is 34 kb long and is split into 13 exons. The precise size and location of the exons has been determined. In addition, essentially full length catalase cDNA clones have been isolated and sequenced and used to tentatively identify the 5'-end of the gene. This assignment, if correct, predicts that the region upstream of the gene does not contain a TATA box. This region is GC rich (67%) and contains several CCAAT and GGGCGG sequences which may form part of the promoter. Translation of the catalase mRNA appears to begin immediately upstream of the amino-terminal Ala residue of catalase.  相似文献   

14.
Human catalase is an heme-containing peroxisomal enzyme that breaks down hydrogen peroxide to water and oxygen; it is implicated in ethanol metabolism, inflammation, apoptosis, aging and cancer. The 1. 5 A resolution human enzyme structure, both with and without bound NADPH, establishes the conserved features of mammalian catalase fold and assembly, implicates Tyr370 as the tyrosine radical, suggests the structural basis for redox-sensitive binding of cognate mRNA via the catalase NADPH binding site, and identifies an unexpectedly substantial number of water-mediated domain contacts. A molecular ruler mechanism based on observed water positions in the 25 A-long channel resolves problems for selecting hydrogen peroxide. Control of water-mediated hydrogen bonds by this ruler selects for the longer hydrogen peroxide and explains the paradoxical effects of mutations that increase active site access but lower catalytic rate. The heme active site is tuned without compromising peroxide binding through a Tyr-Arg-His-Asp charge relay, arginine residue to heme carboxylate group hydrogen bonding, and aromatic stacking. Structures of the non-specific cyanide and specific 3-amino-1,2, 4-triazole inhibitor complexes of human catalase identify their modes of inhibition and help reveal the catalytic mechanism of catalase. Taken together, these resting state and inhibited human catalase structures support specific, structure-based mechanisms for the catalase substrate recognition, reaction and inhibition and provide a molecular basis for understanding ethanol intoxication and the likely effects of human polymorphisms.  相似文献   

15.
W W Murray  R A Rachubinski 《Gene》1987,61(3):401-413
We report the isolation and nucleotide (nt) sequence determination of cDNA encoding peroxisomal catalase (Cat) from the yeast Candida tropicalis pK233. The catalase cDNA (Cat) has a single open reading frame (ORF) of 1455 nt, encoding a protein of 484 amino acids (aa), not including the initiator methionine. The Mr of the protein is 54767. Codon use in the gene is not random, with 90.9% of the aa specified by 25 principal codons. The principal codons used in the expression of Cat in C. tropicalis are similar to those used in the expression of the fatty acyl-CoA oxidase gene of C. tropicalis and of highly expressed genes in Saccharomyces cerevisiae. Cat shows 48.0%, 49.7%, and 48.3% aa identity with human, bovine, and rat catalases, respectively, and 44.3% aa identity with catalase T of S. cerevisiae. The 3 aa of bovine liver catalase previously postulated to participate in catalysis and 79.5% of those aa in the immediate environment of hemin, the prosthetic group of catalase, are conserved in Cat of C. tropicalis.  相似文献   

16.
Catalase plays an important role in protecting organisms against oxidative damage caused by reactive oxygen species (ROS) by degrading surplus hydrogen peroxide. Addition of exogenous catalase can alleviate injuries caused by ROS. Thus, production of human catalase through genetic engineering will meet the increasing therapeutic demand for this enzyme. In this study, we successfully expressed the recombinant gene in mouse mammary gland, and biologically active human catalase was secreted into the milk of the transgenic mice. The peroxisomal targeting sequence (PTS) within the catalase gene had no significant negative effect on the secretion of the recombinant protein. Intake of the transgenic milk by the pups was found to decrease lipid peroxidation, increase the total superoxide dismutase (T-SOD) activity in the brain, and enhance the total antioxidative capacity (T-AOC) of brain, liver, and serum. To our knowledge, this is the first example of efficient production of biologically active human catalase in the milk of transgenic animals. Our study suggests that scaled-up production in transgenic farm animals would yield sufficient human catalase for biomedical research and clinical therapies.  相似文献   

17.
Sodium perchlorate forms a reversible and enzymatically inactive complex with human red blood cell catalase. The rates of binding and association constants increase inversely with pH. Analysis of the dependence of association constants on pH suggests participation of a carboxylate or imidazole group in the proton-assisted binding of perchlorate to catalase. Formation of the complex resulting from binding of perchlorate to the apoprotein involves a conformation change and is accompanied by alterations in the optical spectrum of catalase. In the presence of hydrogen peroxide the progressive inhibition of the enzyme by perchlorate is faster than at nonturnover conditions, indicating additional reaction of the ligand with catalase intermediate complexes.  相似文献   

18.
19.
The function of catalase-bound NADPH   总被引:6,自引:0,他引:6  
Catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6) is of historical interest for having been the subject of some of the earliest investigations of enzymes. A feature of catalase that has been poorly understood for several decades, however, is the mechanism by which catalase remains active in the presence of its own substrate, hydrogen peroxide. We reported recently that catalase contains tightly bound NADPH. The present study with bovine and human catalase revealed that NADPH both prevents and reverses the accumulation of compound II, an inactive form of catalase that is generated slowly when catalase is exposed to hydrogen peroxide. Since the effect of NADPH occurs even at NADPH concentrations below 0.1 microM, the protective mechanism is likely to operate in vivo. This discovery of the role of catalase-bound NADPH brings a unity to the concept of two different mechanisms for disposing of hydrogen peroxide (catalase and the glutathione reductase/peroxidase pathway) by revealing that both mechanisms are dependent on NADPH.  相似文献   

20.
Reactive oxygen species have been implicated in aerobic organisms as causative agents in damage to DNA, proteins, and lipids. Catalase is a major enzyme in the defense against such oxidant damage. To determine whether increased catalase expression confers greater resistance to oxidant stress, a eukaryotic expression vector harboring a human catalase cDNA clone was constructed. Acatalasemic murine fibroblasts were then co-transfected with the catalase expression vector and pSV2-neo, and successfully transfected cells were identified by their ability to grow in the presence of geneticin. Clones that contained integrated copies of the catalase expression vector were identified by Polymerase Chain Reaction (PCR) analysis. Stably transfected geneticin-resistant cell lines that overexpressed catalase in potentially positive cell lines were confirmed by catalase enzyme assays. To examine the physiological relevance of catalase overexpression, cells were exposed to oxidant stresses (hydrogen peroxide and hyperoxia), and survival rates were determined. Results demonstrated a significant resistance to oxidative stress in cells overexpressing catalase when compared to controls. These transfected cell lines will provide important models for further evaluation of the role of catalase in protecting cells against the toxic effects of oxygen-derived free radicals and their derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号