首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single amino acid difference in the catalytic domain of two isoforms of the alpha2,6-sialyltransferase (ST6Gal I) leads to differences in their trafficking, processing, and oligomerization. The STtyr isoform is transiently localized in the Golgi and is ultimately cleaved and secreted, whereas the STcys isoform is stably localized in the Golgi and is not cleaved and secreted. The stable localization of STcys is correlated with its enhanced ability to oligomerize. To test the hypothesis that multiple signals can mediate Golgi localization and further evaluate the role of oligomerization in the localization process, we evaluated the effects of individually and simultaneously altering the cytosolic tail and transmembrane region of the STcys isoform. We found that the localization, processing, and oligomerization of STcys were not substantially changed when either the core amino acids of the cytosolic tail were deleted or the sequence and length of the transmembrane region were altered. In contrast, when these changes were made simultaneously, the STcys isoform was converted into a form that was processed, secreted, and weakly oligomerized like STtyr. We propose that STcys oligomerization is a secondary event resulting from its concentration in the Golgi via mechanisms independently mediated by its cytosolic tail and transmembrane region.  相似文献   

2.
3.
Chen C  Colley KJ 《Glycobiology》2000,10(5):531-583
The influence of N-linked glycosylation on the activity and trafficking of membrane associated and soluble forms of the STtyr isoform of the ST6Gal I has been evaluated. We have demonstrated that the enzyme is glycosylated on Asn 146 and Asn 158 and that glycosylation is not required for the endoplasmic reticulum to Golgi transport of the membrane-associated form of the STtyr isoform. In addition, N-linked glycosylation may stabilize the protein but is not absolutely required for catalytic activity in vivo. In contrast, soluble forms of the protein consisting of amino acids 64-403, 89-403, and 97-403 are efficiently secreted and active in their fully glycosylated forms, but retained in the endoplasmic reticulum and inactive in their unglycosylated forms. These results suggest that membrane associated and soluble forms of the STtyr protein have different requirements for N-linked glycosylation. Elimination of the oligosaccharide attached to Asn 158 in the full length STtyr single and double glycosylation mutants generates proteins that are not cleaved and secreted but stably localized in the Golgi, like the STcys isoform of the ST6Gal I. This stable Golgi localization is correlated with the observation that these two mutants are active in in vivo assays but inactive in in vitro assays of membrane lysates. We predict that removal of N-linked oligosaccharides leads to an increased ability of the STtyr protein to self-associate or oligomerize which subsequently allows more stable retention in the Golgi and increased aggregation and inactivity when membranes are lysed in the in vitro activity assays.  相似文献   

4.
探讨肝癌细胞系Hepa1-6与肝正常细胞系BNL CL.2唾液酸糖基转移酶ST3Gal和ST6Gal家族mRNA表达的差异以及与细胞膜唾液酸含量的关系,采用RT-PCR方法检测ST3Gal唾液酸转移酶家族6个成员以及ST6Gal唾液酸转移酶家族2个成员mRNA表达差异,用凝集素芯片检测细胞膜表面唾液酸表达情况,结果显示:与正常细胞系BNL CL.2相比,hepa1-6细胞内唾液酸转移酶ST3GalⅠ、ST3GalⅣ、ST3GalⅥ呈现高表达,ST3GalⅤ低表达,ST3GalⅡ、ST3GalⅢ表达无显著性差异,两细胞系内均为检测出ST6GalⅠ表达,ST6GalⅡ表达无显著差异;hepa1-6细胞膜α2-3和α2-6连接唾液酸含量均显著增加;提示ST3GalⅠ、ST3GalⅣ、ST3GalⅤ、ST3GalⅥ可能与肝癌发生过程相关,ST3GalⅠ、ST3GalⅣ、ST3GalⅥ可能与肝癌细胞膜α2-3唾液酸含量增加相关,ST6Gal家族对细胞膜α2-6连接唾液酸含量增加无贡献.  相似文献   

5.
6.
Sialic acid at the terminus of cell surface glycoconjugates is a critical element in cell-cell recognition, receptor binding and immune responses. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans are highly upregulated in cancer and the resulting hypersialylation of the tumour cell surface correlates strongly with tumour growth, metastasis and drug resistance. Inhibitors of human STs, in particular human ST6Gal I, are thus expected to be valuable chemical tools for the discovery of novel anticancer drugs. Herein, we report on the computationally-guided design and development of uridine-based inhibitors that replace the charged phosphodiester linker of known ST inhibitors with a neutral carbamate to improve pharmacokinetic properties and synthetic accessibility. A series of 24 carbamate-linked uridyl-based compounds were synthesised by coupling aryl and hetaryl α-hydroxyphosphonates with a 5′-amino-5′-deoxyuridine fragment. The inhibitory activities of the newly synthesised compounds against recombinant human ST6Gal I were determined using a luminescent microplate assay, and five promising inhibitors with Ki’s ranging from 1 to 20 µM were identified. These results show that carbamate-linked uridyl-based compounds are a potential new class of readily accessible, non-cytotoxic ST inhibitors to be further explored.  相似文献   

7.
8.
The ST6Gal I is a sialyltransferase that functions in the late Golgi to modify the N-linked oligosaccharides of glycoproteins. The ST6Gal I is expressed as two isoforms with a single amino acid difference in their catalytic domains. The STcys isoform is stably retained in the cell and is predominantly found in the Golgi, whereas the STtyr isoform is only transiently localized in the Golgi and is cleaved and secreted from a post-Golgi compartment. These two ST6Gal I isoforms were used to explore the role of the bilayer thickness mechanism and oligomerization in Golgi localization. Analysis of STcys and STtyr proteins with longer transmembrane regions suggested that the bilayer thickness mechanism is not the predominant mechanism used for ST6Gal I Golgi localization. In contrast, the formation and quantity of Triton X-100-insoluble oligomers was correlated with the stable or transient localization of the ST6Gal I isoforms in the Golgi. Nearly 100% of the STcys and only 13% of the STtyr were found as Triton-insoluble oligomers when Golgi membranes of COS-1 cells expressing these proteins were solubilized at pH 6.3, the pH of the late Golgi. In contrast, both proteins were found in the soluble fraction when these membranes were solubilized at pH 8.0. Analysis of other mutants suggested that a conformational change in the catalytic domain rather than increased disulfide bond-based cross-linking is the basis for the increased ability of STcys protein to form oligomers and the stable localization of STcys protein in the Golgi.  相似文献   

9.
A soluble and active form of recombinant human ST6Gal I was expressed in Escherichia coli. The gene encoding the soluble form of ST6Gal I lacking the membrane and cytosolic regions was introduced into a bacterial expression vector, pMAL-p2X, fused in frame with a maltose-binding protein (MBP) tag. Low-temperature cultivation at 13C during IPTG-induction significantly improved both solubility and MBP-tagging of the recombinant enzyme expressed in bacteria. The supernatant prepared by disruption of the cells demonstrated sialic acid transfer activity to both an oligosaccharide and a glycoprotein, asialofetuin, indicating that the enzyme expressed in bacteria is soluble and active. The MBP-tagged enzyme was efficiently purified by a combination of cation-exchange column and amylase-conjugated agarose column chromatography. The purified recombinant enzyme exerted enzymatic activity even in the absence of detergents in the reaction mixture. Acceptor substrate specificity of the enzyme was marginally different from that of rat liver ST6Gal I. These observations suggest that membrane and cytosolic regions of ST6Gal I may affect the properties of the enzyme. The purified recombinant enzyme was applied to convert desialylated fetuin to resialylated fetuin. Lectin blotting demonstrated that resialylated fetuin possesses a single Neu5Ac 2-6 residue. The resialylated fetuin efficiently blocked hemagglutination induced by influenza virus strain A/Memphis/1/71 (H3N2), indicating that resialylated carbohydrate chains on the protein are so active as to competitively inhibit virus-receptor interaction. In conclusion, soluble recombinant ST6Gal I obtained using our bacterial expression system is a valuable tool to investigate the molecular mechanisms of biological and pathological interactions mediated via carbohydrates. Published in 2005.The authors contributed equally to this work.  相似文献   

10.
11.
12.
The cDNA encoding a second type of mouse beta-galactoside alpha2,6-sialyltransferase (ST6Gal II) was cloned and characterized. The sequence of mouse ST6Gal II encoded a protein of 524 amino acids and showed 77.1% amino acid sequence identity with human ST6Gal II. Recombinant ST6Gal II exhibited alpha2,6-sialyltransferase activity toward oligosaccharides that have the Galbeta1,4GlcNAc sequence at the nonreducing end of their carbohydrate groups, but it exhibited relatively low and no activity toward some glycoproteins and glycolipids, respectively. On the other hand, ST6Gal I, which has been known as the sole member of the ST6Gal-family for more than ten years, exhibited broad substrate specificity toward oligosaccharides, glycoproteins, and a glycolipid, paragloboside. The ST6Gal II gene was mainly expressed in brain and embryo, whereas the ST6Gal I gene was ubiquitously expressed, and its expression levels were higher than those of the ST6Gal II gene. The ST6Gal II gene is located on chromosome 17 and spans over 70 kb of mouse genomic DNA consisting of at least 6 exons. The ST6Gal II gene has a similar genomic structure to the ST6Gal I gene. In this paper, we have shown that ST6Gal II is a counterpart of ST6Gal I.  相似文献   

13.
alpha2,6-Sialyltransferase (ST6Gal I) functions in the Golgi to terminally sialylate the N-linked oligosaccharides of glycoproteins. Interestingly, rat ST6Gal I is expressed as two isoforms, STtyr and STcys, that differ by a single amino acid in their catalytic domains. In this article, our goal was to evaluate more carefully possible differences in the catalytic activity and intra-Golgi localization of the two isoforms that had been suggested by earlier work. Using soluble recombinant STtyr and STcys enzymes and three asialoglycoprotein substrates for in vitro analysis, we found that the STcys isoform was somewhat more active than the STtyr isoform. However, we found no differences in isoform substrate choice when these proteins were expressed in Chinese hamster ovary cells, and sialylated substrates were detected by lectin blotting. Immuno-fluorescence and immunoelectron microscopy revealed differences in the relative levels of the isoforms found in the endoplasmic reticulum (ER) and Golgi of transiently expressing cells but similar intra-Golgi localization. STtyr was restricted to the Golgi in most cells, and STcys was found in both the ER and Golgi. The ER localization of STcys was especially pronounced with a C-terminal V5 epitope tag. Ultrastructural and deconvolution studies of immunostained HeLa cells expressing STtyr or STcys showed that within the Golgi both isoforms are found in medial-trans regions. The similar catalytic activities and intra-Golgi localization of the two ST6Gal I isoforms suggest that the particular isoform expressed in specific cells and tissues is not likely to have significant functional consequences.  相似文献   

14.
15.
Human β‐galactoside α‐2,6‐sialyltransferase I (hST6Gal I) catalyses the synthesis of sialylated glycoconjugates involved in cell–cell interactions. Overexpression of hST6Gal I is observed in many different types of cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase (ST) inhibitors have been developed based on the natural donor, cytidine 5′‐monophosphate N‐acetylneuraminic acid (CMP‐Neu5Ac). Of these, analogues that are structurally similar to the transition state exhibit the highest inhibitory activity. In order to design inhibitors that are readily accessible synthetically and with favourable pharmacokinetic properties, an investigation of the replacement of the charged phosphodiester‐linker, present in many ST inhibitors, with a potential neutral isostere such as a carbamate or a 1,2,3‐triazole has been undertaken. To investigate this, molecular docking and molecular dynamics simulations were performed. These simulations provided an insight into the binding mode of previously reported phosphodiester‐linked ST inhibitors and demonstrated that targeting the proposed sialyl acceptor site is a viable option for producing selective inhibitors. The potential for a carbamate‐ or triazole‐linker as an isosteric replacement for the phosphodiester in transition‐state analogue ST inhibitors was established using molecular docking. Molecular dynamics simulations of carbamate‐ and phosphodiester‐linked compounds revealed that both classes exhibit consistent interactions with hST6Gal I. Overall, the results obtained from this study provide a rationale for synthetic and biological evaluation of triazole‐ and carbamate‐linked transition‐state analogue ST inhibitors as potential new antimetastatic agents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The enzyme N-acetylglucosaminyltransferase I (NT, EC 2.4.1.101) is a resident type II transmembrane protein of the Golgi apparatus. To delineate the portion of its primary sequence that is responsible for the Golgi retention of this protein, we constructed chimeras containing different N-terminal portions of NT joined to a reporter sequence, the ectodomain of a type II surface membrane protein. These chimeric proteins were found to be retained in the Golgi apparatus as assessed by cell surface biotinylation and immunofluorescence. We found that the transmembrane domain of NT is sufficient to confer Golgi retention of the fusion proteins and propose that it contains the Golgi retention signal of the parent molecule.  相似文献   

18.
19.
The interaction of CD22 with glycoprotein ligands bearing the Siaalpha2,6Gal-R sequence is believed to modulate its function as a regulator of B cell signaling. Although a commercial sialoside-polyacrylamide (PAA) probe, NeuAc- alpha2,6Gal-PAA, has facilitated studies on ligand binding by human CD22, murine CD22 binds instead with high affinity to NeuGcalpha2,6Gal-R. A multivalent probe with this sequence was constructed to facilitate investigations of ligand binding in CD22 function using genetically defined murine models. The probe is based on the sialoside-PAA platform, which is then biotinylated for easy detection. A series of sialoside probes were constructed with two different length linker arms between the sialoside and the backbone and three different sialoside to PAA molar ratios. The NeuGcalpha2,6Gal-PAA probe is specific for CD22: it binds to sialidase-treated B cells of wild-type mice but not B cells of CD22-null mice. Additionally, because the probe only binds to sialidase-treated wild-type cells, it confirms that CD22 is constitutively "masked" on most B cells from wild-type mice by binding to ligands in cis. In contrast, the probe bound equally well to native or sialidase-treated B cells from the immunocompromised ligand-deficient ST6Gal I knockout mice, demonstrating that CD22 is constitutively "unmasked" in these cells.  相似文献   

20.
The MUC1 mucin is expressed on the luminal surface of most simple epithelial cells but in carcinomas, especially those of the breast and ovary, MUC1 is upregulated and aberrantly glycosylated. MUC1 contains a large amount of O-linked glycans which, in the mucin expressed by normal mammary epithelial cells, consist mainly of core 2 based structures carrying polylactosamine chains. However, the mucin expressed by breast carcinomas has shorter side-chains, often consisting of sialylated core 1 (Galbeta1-3GalNAc). in situ hybridization of primary breast tissue showed that a sialyltransferase (ST3Gal I), responsible for adding sialic acid to core 1 thereby terminating chain extension, is elevated in primary breast carcinomas when compared to normal or benign tissue. Furthermore, the level of mRNA expression encoding ST3Gal I is correlated to the intensity of staining seen with the antibody SM3, which specifically recognises underglycosylated, tumour associated MUC1. Thus, the aberrant glycosylation of MUC1 seen in breast carcinomas appears to be due, at least in part, to the elevation of ST3Gal I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号