首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach was developed for screening organic compounds as putative redox mediators of oxidoreductases, including laccases and peroxidases, applicable for xenobiotic degradation. The study was carried out with a homogeneous laccase preparation from the basidiomycete Trametes hirsuta and horseradish peroxidase. Compounds belonging to 1-phenyl-3-methylpyrazolones were selected. Spectroscopic and electrochemical investigation of two of the compounds, sodium 1-phenyl-2,3-dimethyl-4-aminopyrazolone 5n(4)-methanesulfonate (PPNa) and 1-(3-sulfophenyl)-3-methylpyrazolone (SPP), was performed. Electrochemical oxidation of both PPNa and SPP gave rise to high-potential intermediates capable of oxidizing veratryl alcohol, a lignin-modeling compound. Kinetic parameters of these compounds were determined in enzymatic reactions in the presence of laccase. It was shown that enzymatic oxidation of SPP by laccase produced high-potential intermediates capable of oxidizing veratryl alcohol to veratric acid. Veratryl alcohol was not oxidized during enzymatic oxidation of SPP by peroxidase. This points to a difference between the mechanisms of enzymatic oxidation of PPNa and SPP by laccase and peroxidase.  相似文献   

2.
The degradation of 2,6-dimethoxyphenol (DMP) and decolorization of Remazol brilliant blue R dye (RBB), added to culture media of Pleurotus ostreatus developed in submerged fermentation, and the laccase, manganese peroxidase and veratryl alcohol oxidase activities produced in these systems were evaluated. Both compounds were removed from the culture medium mainly by enzymatic action. These compounds decreased the specific growth rate and the effect on the maximal biomass values was not important. The enzymatic activities were increased by DMP and/or RBB; however, the DMP showed a higher inducer effect on all enzymes than RBB. On the other hand, the RBB showed a larger inducer effect on manganese peroxidase activity than on the laccases and veratryl alcohol oxidase activities. These results show that DMP was a better inducer of ligninolytic enzymes than dye, and the process of dye decolorization and degradation of DMP requires the action of all enzymes of the ligninolytic complex.  相似文献   

3.
Sixteen phenolic compounds, 14 of which naturally occurring, were compared to the synthetic 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and violuric acid (VA) in terms of their ability to act as mediators/enhancers in: (1) laccase oxidation of veratryl alcohol as a lignin model compound, and (2) electrochemical oxidation of kraft and flax lignins. HPLC analysis revealed that the syringyl-type phenols methyl syringate and acetosyringone were the most efficient natural enhancers in the laccase oxidation of veratryl alcohol. Both compounds, though far from the performance of ABTS were able to generate veratraldehyde in amount similar to that obtained with VA. By contrast, the best performing phenolic enhancers for the electrochemical oxidation of lignins were sinapinaldehyde, vanillin, acetovanillone, and syringic acid. Catalytic efficiencies close to those achieved with ABTS and VA were calculated for these phenolic compounds.  相似文献   

4.
We report the synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor. The effects of operating parameters such as enzyme level, pH, and electrical potential on the efficiency of veratryl alcohol oxidation were investigated. Furthermore, we compared direct addition of hydrogen peroxide with electrogeneration of the material during enzymatic oxidation of veratryl alcohol. The electroenzymatic method using in situ-generated hydrogen peroxide was found to be effective for oxidation of veratryl alcohol by lignin peroxidase. The new method may be easily applied to biodegradation systems.  相似文献   

5.
Horseradish peroxidase has been shown to catalyze the oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) and benzyl alcohol to the respective aldehydes in the presence of reduced glutathione, MnCl2, and an organic acid metal chelator such as lactate. The oxidation is most likely the result of hydrogen abstraction from the benzylic carbon of the substrate alcohol leading to eventual disproportionation to the aldehyde product. An aromatic cation radical intermediate, as would be formed during the oxidation of veratryl alcohol in the lignin peroxidase-H2O2 system, is not formed during the horseradish peroxidase-catalyzed reaction. In addition to glutathione, dithiothreitol, L-cysteine, and beta-mercaptoethanol are capable of promoting veratryl alcohol oxidation. Non-thiol reductants, such as ascorbate or dihydroxyfumarate (known substrates of horseradish peroxidase), do not support oxidation of veratryl alcohol. Spectral evidence indicates that horseradish peroxidase compound II is formed during the oxidation reaction. Furthermore, electron spin resonance studies indicate that glutathione is oxidized to the thiyl radical. However, in the absence of Mn2+, the thiyl radical is unable to promote the oxidation of veratryl alcohol. In addition, Mn3+ is unable to promote the oxidation of veratryl alcohol in the absence of glutathione. These results suggest that the ultimate oxidant of veratryl alcohol is a Mn(3+)-GSH or Mn(2+)-GS. complex (where GS. is the glutathiyl radical).  相似文献   

6.
Phanerochaete chrysosporium decolorized several polyaromatic azo dyes in ligninolytic culture. The oxidation rates of individual dyes depended on their structures. Veratryl alcohol stimulated azo dye oxidation by pure lignin peroxidase (ligninase, LiP) in vitro. Accumulation of compound II of lignin peroxidase, an oxidized form of the enzyme, was observed after short incubations with these azo substrates. When veratryl alcohol was also present, only the native form of lignin peroxidase was observed. Azo dyes acted as inhibitors of veratryl alcohol oxidation. After an azo dye had been degraded, the oxidation rates of veratryl alcohol recovered, confirming that these two compounds competed for ligninase during the catalytic cycle. Veratryl alcohol acts as a third substrate (with H2O2 and the azo dye) in the lignin peroxidase cycle during oxidations of azo dyes.  相似文献   

7.
Recombinant Phanerochaete chrysosporium lignin peroxidase isozyme H2 (pI 4.4) was produced in insect cells infected with a genetically engineered baculovirus containing a copy of the cDNA clone lambda ML-6. The recombinant enzyme was purified to near homogeneity and is capable of oxidizing veratryl alcohol, iodide, and, to a lesser extent, guaiacol. The Km of the recombinant enzyme for veratryl alcohol and H2O2 is similar to that of the fungal enzyme. The guaiacol oxidation activity or any other activity is not dependent upon Mn2+. The purified recombinant peroxidase is glycosylated with N-linked carbohydrate(s). The recombinant lignin peroxidase eluted from an anion exchange resin similar to that of native isozyme H1 rather than H2. However, the pI of the recombinant enzymes is different from both H1 and H2 isozymes. Further characterization of native isozymes H1 and H2 from the fungal cultures revealed identical N-terminus residues. This indicates that isozymes H1 and H2 differ in post-translational modification.  相似文献   

8.
Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase   总被引:5,自引:0,他引:5  
This paper reports the formation of veratraldehyde by electroenzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) hybridizing both electrochemical and enzymatic reactions and using lignin peroxidase. The novel electroenzymatic method was found to be effective for replacement of hydrogen peroxide by an electrochemical reactor, which is essential for enzyme activity of lignin peroxidase. The effects of operating parameters such as enzyme dosage, pH, and electric potential were investigated. Further, the kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to oxidation when hydrogen peroxide was supplied externally.  相似文献   

9.
Transformation of veratric (3,4-dimethoxybenzoic) acid by the white rot fungus Phlebia radiata was studied to elucidate the role of ligninolytic, reductive, and demeth(ox)ylating enzymes. Under both air and a 100% O2 atmosphere, with nitrogen limitation and glucose as a carbon source, reducing activity resulted in the accumulation of veratryl alcohol in the medium. When the fungus was cultivated under air, veratric acid caused a rapid increase in laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) production, which indicated that veratric acid was first demethylated, thus providing phenolic compounds for laccase. After a rapid decline in laccase activity, elevated lignin peroxidase (ligninase) activity and manganese-dependent peroxidase production were detected simultaneously with extracellular release of methanol. This indicated apparent demethoxylation. When the fungus was cultivated under a continuous 100% O2 flow and in the presence of veratric acid, laccase production was markedly repressed, whereas production of lignin peroxidase and degradation of veratryl compounds were clearly enhanced. In all cultures, the increases in lignin peroxidase titers were directly related to veratryl alcohol accumulation. Evolution of 14CO2 from 3-O14CH3-and 4-O14CH3-labeled veratric acids showed that the position of the methoxyl substituent in the aromatic ring only slightly affected demeth(ox)ylation activity. In both cases, more than 60% of the total 14C was converted to 14CO2 under air in 4 weeks, and oxygen flux increased the degradation rate of the 14C-labeled veratric acids just as it did with unlabeled cultures.  相似文献   

10.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

11.
Homoveratric acid (HVA) degradation was observed in cultures of Pleurotus eryngii lacking lignin peroxidase (LiP) activity. Extracellular enzymes seemed responsible for this transformation, and the lack of activity after ultrafiltration of the culture liquid suggests that the presence of some low-molecular-size compounds is required. This hypothesis is supported by rapid HVA transformation after addition of the synthetic laccase substrate 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) to the ultrafiltered liquid. HVA transformation by the extracellular enzymes from P. eryngii takes place via C-C breakdown and formation of veratryl alcohol, which is further transformed into veratraldehyde. The same major compounds were found during HVA transformation by LiP from Phanerochaete chrysosporium, but this reaction was not stimulated by ABTS. Although the involvement of other enzymes cannot be ruled out, purified laccase from Pleurotus eryngii caused the same HVA transformation pattern in presence of ABTS. Moreover, veratryl alcohol oxidation by P. eryngii laccase was demonstrated in the presence of ABTS. These results suggest that enzymatic systems lacking LiP could be responsible for natural degradation of lignin.  相似文献   

12.
An enzyme showing alkaliphilic laccase activity was purified from the culture supernatant of Myrothecium verrucaria 24G-4. The enzyme was highly stable under alkaline conditions, showed an optimum reaction pH of 9.0 for 4-aminoantipyrine/phenol coupling, and decolorized synthetic dyes under alkaline conditions. It showed structural and catalytic similarities with bilirubin oxidase, but preferably oxidized phenolic compounds. The enzyme catalyzed veratryl alcohol oxidation at pH 9.0 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a mediator, suggesting that the laccase mediator system functioned well under alkaline conditions.  相似文献   

13.
To determine the applicability of water-in-oil microemulsions for enzymatic conversions catalysed by yellow laccase from Pleurotus ostreatus (YLPO) D1 the following were studied: (i) the catalytic activity of the YLPO D1 in the oxidation of typical phenolic substrates: catechol (CAT), 2,6-dimethoxyphenol (DMOP) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), at the appropriate pH optimum values in aqueous buffer solutions and in 62?mM bis-2-(ethylhexyl) sulfosuccinate sodium salt (AOT) in isooctane water-in-oil microemulsions; (ii) the effect of acetonitrile (ACN) on the kinetic parameters of DMOP oxidation catalysed by this laccase; (iii) the optimum conditions for the laccase catalytic activity in AOT in isooctane w/o microemulsions (w, laccase, AOT concentration); (iiv) the possibility of using the optimum water-in-oil microemulsions for the oxidation of aromatic alcohols (veratryl alcohol (VA) and benzyl alcohol (BA)) and the oxidative degradation of selected pollutants (3-chlorophenol, anthracene (ANT) and fluorene (FLU)).  相似文献   

14.
White-rot fungi (WRF) are ubiquitous in nature with their natural ability to compete and survive. WRF are the only organisms known to have the ability to degrade and mineralize recalcitrant plant polymer lignin. Their potential to degrade second most abundant carbon reserve material lignin on the earth make them important link in global carbon cycle. WRF degrade lignin by its unique ligninolytic enzymatic machinery including lignin peroxidase, manganese peroxidase, laccase, cellobiose dehydrogenase, H2O2-generating enzymes, etc. The ligninolytic enzymes system is non-specific, extracellular and free radical based that allows them to degrade structurally diverse range of xenobiotic compounds. Lignin peroxidase and manganese peroxidase carry out direct and indirect oxidation as well as reduction of xenobiotic compounds. Indirect reactions involved redox mediators such as veratryl alcohol and Mn2+. Reduction reactions are carried out by carboxyl, superoxide and semiquinone radicals, etc. Methylation is used as detoxification mechanism by WRF. Highly oxidized chemicals are reduced by transmembrane redox potential. Degradation of a number of environmental pollutants by ligninolytic system of white rot fungi is described in the present review.  相似文献   

15.
To determine the applicability of water-in-oil microemulsions for enzymatic conversions catalysed by yellow laccase from Pleurotus ostreatus (YLPO) D1 the following were studied: (i) the catalytic activity of the YLPO D1 in the oxidation of typical phenolic substrates: catechol (CAT), 2,6-dimethoxyphenol (DMOP) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), at the appropriate pH optimum values in aqueous buffer solutions and in 62 mM bis-2-(ethylhexyl) sulfosuccinate sodium salt (AOT) in isooctane water-in-oil microemulsions; (ii) the effect of acetonitrile (ACN) on the kinetic parameters of DMOP oxidation catalysed by this laccase; (iii) the optimum conditions for the laccase catalytic activity in AOT in isooctane w/o microemulsions (w, laccase, AOT concentration); (iiv) the possibility of using the optimum water-in-oil microemulsions for the oxidation of aromatic alcohols (veratryl alcohol (VA) and benzyl alcohol (BA)) and the oxidative degradation of selected pollutants (3-chlorophenol, anthracene (ANT) and fluorene (FLU)).  相似文献   

16.
Oxidation of veratryl alcohol by lignin peroxidase (LiP) was potently inhibited by oxalic acid. The inhibition analysis with Lineweaver-Burk plots clearly showed that the type of inhibition is non-competitive. The enzymatic oxidation of veratryl alcohol in the presence of 14C-oxalic acid yielded radioactive carbon dioxide. The results indicate that the apparent inhibition of LiP is caused by reduction of the veratryl alcohol cation radical intermediate back to the substrate level by oxalate, which is concomitantly oxidized to carbon dioxide.  相似文献   

17.
Abstract: The mechanism of oxidation of veratryl alcohol and β-0–4 dimeric lignin models is reviewed. Veratryl alcohol radicals are intermediates in both oxidation pathways. The possible role of the veratryl alcohol radical cation as a mediator is discussed. The lignin peroxidase (LIP) redox cycle is analyzed in terms of the Marcus theory of electron transfer. Reduction of both LiP-Compound I (LiP-I) and LiP-Compound II (LiP-II) by veratryl alcohol occurs in the endergonic region of the driving force. The reduction of LiP-II has a higher reorganization energy due to the change in spin state and the accompanying conformational change in the protein. It is suggested that a reversible nucleophilic addition of a carbohydrate residue located at the entrance of the active site channel plays a key role in the LiP redox cycle. Moreover. (polymeric) hydroxysubstituted benzyl radicals may reduce LiP-II via long-range electron transfer.  相似文献   

18.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

19.
A Mn(2+)-binding site was created in the recombinant lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. In fungal Mn peroxidase, the Mn-binding site is composed of Glu35, Glu39, and Asp179. We generated a similar site in lignin peroxidase by generating an anionic binding site. We generated three mutations: Asn182Asp, Asp183Lys, and Ala36Glu. Its activity, veratryl alcohol, and Mn(2+) oxidation were compared to those of native recombinant enzyme and to fungal Mn peroxidase isozyme H4, respectively. The mutated enzyme was able to oxidize Mn(2+) and still retain its ability to oxidize veratryl alcohol. Steady-state results indicate that the enzyme's ability to oxidize veratryl alcohol was lowered slightly. The K(m) for Mn(2+) was determined to be 1.57 mM and the k(cat) = 5.45 s(-1). These results indicate that the mutated lignin peroxidase is less effective in Mn(2+) oxidation that the wild type fungal enzyme. The pH optima of veratryl alcohol and Mn oxidation were altered by the mutation. They are one unit of pH value higher than those of recombinant H8 and wild type fungal Mn peroxidase isozyme H4.  相似文献   

20.
关于巯基和Mn~(2+)介导豆壳过氧化物酶氧化藜芦醇的研究   总被引:1,自引:0,他引:1  
藜芦醇作为非酚型木素模型物具有较高的氧化还原电位,豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC.1.11.1.7)通过依赖于过氧化氢的正常过氧化物酶催化循环不能氧化藜芦醇,但在还原型谷胱甘肽、Mn2+和有机酸络合剂存在下却可以通过不依赖于过氧化氢的氧化酶反应途径完成对藜芦醇的氧化,产物为藜芦醛,反应最适pH为4.2。动力学研究表明该反应遵循顺规序列反应机制;对藜芦醇的表观KM值为4.3mmol/L,对谷胱甘肽的表观KM值为4.8mmol/L。巯基还原剂二硫苏糖醇、L-半胱氨酸和β-巯基乙醇亦可替代还原型谷胱甘肽促进藜芦醇氧化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号