首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological role of DJ-1, a protein involved in familial Parkinson disease is still controversial. One of the hypotheses proposed indicates a sensor role for oxidative stress, through oxidation of a conserved cysteine residue (Cys-106). The association of DJ-1 mutations with Parkinson disease suggests a loss of function, specific to dopaminergic neurons. Under oxidative conditions, highly reactive dopamine quinones (DAQs) can be produced, which can modify cysteine residues. In cellular models, DJ-1 was found covalently modified by dopamine. We analyzed the structural modifications induced on human DJ-1 by DAQs in vitro. We described the structural perturbations induced by DAQ adduct formation on each of the three cysteine residues of DJ-1 using specific mutants. Cys-53 is the most reactive residue and forms a covalent dimer also in SH-SY5Y DJ-1-transfected cells, but modification of Cys-106 induces the most severe structural perturbations; Cys-46 is not reactive. The relevance of these covalent modifications to the several functions ascribed to DJ-1 is discussed in the context of the cell response to a dopamine-derived oxidative insult.  相似文献   

2.
DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported to undergo preferential oxidation of the cysteine residue at position 106 (Cys-106) under oxidative stress; however, details of the molecular mechanisms are not well known. In the present study, mechanisms of DJ-1 oxidation induced by 6-hydroxydopamine (6-OHDA) were investigated by using SH-SY5Y cells. The treatment of these cells with 6-OHDA caused an obvious acidic spot sift of DJ-1 due to its oxidation. However, when catalase, which is an hydrogen peroxide (H(2)O(2))-removing enzyme, was added during the treatment, it failed to prevent the oxidation induced by 6-OHDA, suggesting that electrophilic p-quinone formed from 6-OHDA, but not H(2)O(2), was responsible for the DJ-1 oxidation. Benzoquinone, another electrophilic p-quinone, also induced DJ-1 oxidation. The intracellular glutathione (GSH) levels were significantly decreased by 6-OHDA, irrespective of the presence or absence of catalase. The inhibition of GSH synthesis by buthionine sulfoximine resulted in a decrease in GSH levels and enhancement of DJ-1 oxidation. The pretreatment of cells with N-acetyl-cysteine prevented the loss of intracellular GSH and subsequently DJ-1 oxidation induced by 6-OHDA. Collectively, these results suggest that electrophilic p-quinone formed from 6-OHDA induces DJ-1 oxidation by decreasing intracellular GSH.  相似文献   

3.
Lin J  Prahlad J  Wilson MA 《Biochemistry》2012,51(18):3799-3807
DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1α and DJ-1β) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1β. The structure of D. melanogaster DJ-1β is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1β. His126 in human DJ-1 is substituted with a tyrosine in DJ-1β, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO(2)(-)) results in considerable thermal stabilization of both Drosophila DJ-1β and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.  相似文献   

4.
DJ-1 is a homodimeric protein that is centrally involved in various human diseases including Parkinson disease (PD). DJ-1 protects against oxidative damage and mitochondrial dysfunction through a homeostatic control of reactive oxygen species (ROS). DJ-1 pathology results from a loss of function, where ROS readily oxidizes a highly conserved and functionally essential cysteine (C106). The over-oxidation of DJ-1 C106 leads to a dynamically destabilized and biologically inactivated protein. An analysis of the structural stability of DJ-1 as a function of oxidative state and temperature may provide further insights into the role the protein plays in PD progression. NMR spectroscopy, circular dichroism, analytical ultracentrifugation sedimentation equilibrium, and molecular dynamics simulations were utilized to investigate the structure and dynamics of the reduced, oxidized (C106-SO2), and over-oxidized (C106-SO3) forms of DJ-1 for temperatures ranging from 5°C to 37°C. The three oxidative states of DJ-1 exhibited distinct temperature-dependent structural changes. A cold-induced aggregation occurred for the three DJ-1 oxidative states by 5°C, where the over-oxidized state aggregated at significantly higher temperatures than both the oxidized and reduced forms. Only the oxidized and over-oxidized forms of DJ-1 exhibited a mix state containing both folded and partially denatured protein that likely preserved secondary structure content. The relative amount of this denatured form of DJ-1 increased as the temperature was lowered, consistent with a cold-denaturation. Notably, the cold-induced aggregation and denaturation for the DJ-1 oxidative states were completely reversible. The dramatic changes in the structural stability of DJ-1 as a function of oxidative state and temperature are relevant to its role in PD and its functional response to oxidative stress.  相似文献   

5.
A significant proportion of early onset parkinsonism is inherited as an autosomal-recessive trait (AR-EP). DJ-1 was identified as one of the causative genes for AR-EP (PARK7), and DJ-1 protein has been implicated in oxidative stress response through oxidation of one of the three cysteine residues (i.e., Cys106). However, the individual roles of these cysteine residues remained unclear. We show by a systematic mutagenesis analysis that Cys46 and Cys53 of DJ-1, but not Cys106, are susceptible to S-nitrosylation in vitro as well as in cultured cells. Furthermore, alanine substitution of Cys46 diminished dimerization of DJ-1, a fundamental feature of this protein. These results indicate that distinct cysteine residues of DJ-1 harbor differential roles in relation to its structure and function.  相似文献   

6.
DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf.  相似文献   

7.
8.
9.
As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H(2)O(2). Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.  相似文献   

10.
11.
DJ-1 is the third gene that has been linked to Parkinson disease. Mutations in the DJ-1 gene cause early onset PD with autosomal recessive inheritance. To clarify the mechanism of DJ-1 protection, we have overexpressed the gene in cultured dopaminergic cells that were then subjected to chemical stress. In the rat dopaminergic cell line, N27, and in primary dopamine neurons, overexpression of wild type DJ-1 protected cells from death induced by hydrogen peroxide and 6-hydroxydopamine. Overexpressing the L166P mutant DJ-1 had no protective effect. By contrast, knocking down endogenous DJ-1 with antisense DJ-1 rendered cells more susceptible to oxidative damage. We have found that DJ-1 improves survival by increasing cellular glutathione levels through an increase in the rate-limiting enzyme glutamate cysteine ligase. Blocking glutathione synthesis eliminated the beneficial effect of DJ-1. Protection could be restored by adding exogenous glutathione. Wild type DJ-1 reduced cellular reactive oxygen species and reduced the levels of protein oxidation caused by oxidative stress. By a separate mechanism, overexpressing wild type DJ-1 inhibited the protein aggregation and cytotoxicity usually caused by A53T human alpha-synuclein. Under these circumstances, DJ-1 increased the level of heat shock protein 70 but did not change the glutathione level. Our data indicate that DJ-1 protects dopaminergic neurons from oxidative stress through up-regulation of glutathione synthesis and from the toxic consequences of mutant humanalpha-synuclein through increased expression of heat shock protein 70. We conclude that DJ-1 has multiple specific mechanisms for protecting dopamine neurons from cell death.  相似文献   

12.
13.
14.
Parkinson disease (PD)-associated genomic deletions and the destabilizing L166P point mutation lead to loss of the cytoprotective DJ-1 protein. The effects of other PD-associated point mutations are less clear. Here we demonstrate that the M26I mutation reduces DJ-1 expression, particularly in a null background (knockout mouse embryonic fibroblasts). Thus, homozygous M26I mutation causes loss of DJ-1 protein. To determine the cellular consequences, we measured suppression of apoptosis signal-regulating kinase 1 (ASK1) and cytotoxicity for [M26I]DJ-1, and systematically all other DJ-1 methionine and cysteine mutants. C106A mutation of the central redox site specifically abolished binding to ASK1 and the cytoprotective activity of DJ-1. DJ-1 was apparently recruited into the ASK1 signalosome via Cys-106-linked mixed disulfides. The designed higher order oxidation mimicking [C106DD]DJ-1 non-covalently bound to ASK1 even in the absence of hydrogen peroxide and conferred partial cytoprotection. Interestingly, mutations of peripheral redox sites (C46A and C53A) and M26I also led to constitutive ASK1 binding. Cytoprotective [wt]DJ-1 bound to the ASK1 N terminus (which is known to bind another negative regulator, thioredoxin 1), whereas [M26I]DJ-1 bound to aberrant C-terminal site(s). Consequently, the peripheral cysteine mutants retained cytoprotective activity, whereas the PD-associated mutant [M26I]DJ-1 failed to suppress ASK1 activity and nuclear export of the death domain-associated protein Daxx and did not promote cytoprotection. Thus, cytoprotective binding of DJ-1 to ASK1 depends on the central redox-sensitive Cys-106 and may be modulated by peripheral cysteine residues. We suggest that impairments in oxidative conformation changes of DJ-1 might contribute to PD neurodegeneration.Loss-of-function mutations in the DJ-1 gene (PARK7) cause autosomal-recessive hereditary Parkinson disease (PD)2 (1). The most dramatic PD-associated mutation L166P impairs DJ-1 dimer formation and dramatically destabilizes the protein (27). Other mutations such as M26I (8) and E64D (9) have more subtle defects with unclear cellular consequences (4, 7, 10, 11). In addition to this genetic association, DJ-1 is neuropathologically linked to PD. DJ-1 is up-regulated in reactive astrocytes, and it is oxidatively modified in brains of sporadic PD patients (1214).DJ-1 protects against oxidative stress and mitochondrial toxins in cell culture (1517) as well as in diverse animal models (1821). The cytoprotective effects of DJ-1 may be stimulated by oxidation and mediated by molecular chaperoning (22, 23), and/or facilitation of the pro-survival Akt and suppression of apoptosis signal-regulating kinase 1 (ASK1) pathways (6, 24, 25). The cytoprotective activity of DJ-1 against oxidative stress depends on its cysteine residues (15, 17, 26). Among the three cysteine residues of DJ-1, the most prominent one is the easiest oxidizable Cys-106 (27) that is in a constrained conformation (28), but the other cysteine residues Cys-46 and Cys-53 have been implicated with DJ-1 activity as well (22). However, the molecular basis of oxidation-mediated cytoprotective activity of DJ-1 is not clear. Moreover, the roles of PD-mutated and in vivo oxidized methionines are not known.Here we have mutagenized all oxidizable residues within DJ-1 and studied the effects on protein stability and function. The PD-associated mutation M26I within the DJ-1 dimer interface selectively reduced protein expression as well as ASK1 suppression and cytoprotective activity in oxidatively stressed cells. These cell culture results support a pathogenic effect of the clinical M26I mutation (8). Furthermore, oxidation-defective C106A mutation abolished binding to ASK1 and cytoprotective activity of DJ-1, whereas the designed higher order oxidation mimicking mutant [C106DD]DJ-1 bound to ASK1 even in the absence of H2O2 and conferred partial cytoprotection. The peripheral cysteine mutants [C46A]DJ-1 and [C53A]DJ-1 were also cytoprotective and were incorporated into the ASK1 signalosome even in the basal state. Thus, DJ-1 may be activated by a complex mechanism, which depends on the redox center Cys-106 and is modulated by the peripheral cysteine residues. Impairments of oxidative DJ-1 activation might contribute to the pathogenesis of PD.  相似文献   

15.
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently reported the aggregation of proteins in a yajL mutant in an oxidative stress-dependent manner and that YajL exhibits chaperone activity. Here, we show that YajL displays covalent chaperone and weak protein oxidoreductase activities that are dependent on its exposed cysteine 106. It catalyzes reduced RNase oxidation and scrambled RNase isomerization and insulin reduction and forms mixed disulfides with many cellular proteins upon oxidative stress. The formation of mixed disulfides was detected by immunoblotting bacterial extracts with anti-YajL antibodies under nonreducing conditions. Disulfides were purified from bacterial extracts on a YajL affinity column, separated by nonreducing-reducing SDS-PAGE, and identified by mass spectrometry. Covalent YajL substrates included ribosomal proteins, aminoacyl-tRNA synthetases, chaperones, catalases, peroxidases, and other proteins containing cysteines essential for catalysis or FeS cluster binding, such as glyceraldehyde-3-phosphate dehydrogenase, aldehyde dehydrogenase, aconitase, and FeS cluster-containing subunits of respiratory chains. In addition, we show that DJ-1 also forms mixed disulfides with cytoplasmic proteins upon oxidative stress. These results shed light on the oxidative stress-dependent chaperone function of YajL and identify YajL substrates involved in translation, stress protection, protein solubilization, and metabolism. They reveal a crucial role for cysteine 106 and suggest that DJ-1 also functions as a covalent chaperone. These findings are consistent with several defects observed in yajL or DJ-1 mutants, including translational defects, protein aggregation, oxidative stress sensitivity, and metabolic deficiencies.  相似文献   

16.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by oxidative stress and protein aggregation. Both toxic phenomena are mitigated by DJ-1, a homodimeric protein with proposed antioxidant and chaperone activities. The neuroprotective function of DJ-1 is modulated by oxidation of cysteine 106, a residue that may act as an oxidative stress sensor. Loss-of-function mutations in the DJ-1 gene have been linked to early onset PD, and age-dependent over-oxidation of DJ-1 is thought to contribute to sporadic PD. The familial mutant L166P fails to dimerize and is rapidly degraded, suggesting that protein destabilization accounts for the dysfunction of this mutant. In this study, we investigated how the structure and stability of DJ-1 are impacted by two other pathogenic substitutions (M26I and E64D) and by over-oxidation with H2O2. Whereas the recombinant wild-type protein and E64D both adopted a stable dimeric structure, M26I showed an increased propensity to aggregate and decreased secondary structure. Similar to M26I, over-oxidized wild-type DJ-1 exhibited reduced secondary structure, and this property correlated with destabilization of the dimer. The engineered mutant C106A had a greater thermodynamic stability and was more resistant to oxidation-induced destabilization than the wild-type protein. These results suggest that (i) the M26I substitution and over-oxidation destabilize dimeric DJ-1, and (ii) the oxidation of cysteine 106 contributes to DJ-1 destabilization. Our findings provide a structural basis for DJ-1 dysfunction in familial and sporadic PD, and they suggest that dimer stabilization is a reasonable therapeutic strategy to treat both forms of this disorder.  相似文献   

17.
Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined p K a value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed p K a of 5.4 +/- 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine p K a analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the p K a of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its p K a in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.  相似文献   

18.
DJ-1 is secreted into the serum and plasma of patients with various diseases. In this study, DJ-1 was found to be secreted into culture media of various cells and the amount of wild-type DJ-1 secreted was two-fold greater than that of mutant DJ-1 of cysteine at 106 (C106). Furthermore, the oxidative status of more than 90% of the DJ-1 secreted from HeLa cells was SOH and SO2H forms of C106. A portion of DJ-1 in cells was localized in microdomains of the membrane. These findings suggest that DJ-1 is secreted through microdomains and that oxidation of DJ-1 at C106 facilitates the secretion.  相似文献   

19.
DJ-1 has a role in antioxidative stress to prevent cell death   总被引:12,自引:0,他引:12       下载免费PDF全文
Deletion and point (L166P) mutations of DJ-1 have recently been shown to be responsible for the onset of familial Parkinson's disease (PD, PARK7). The aim of this study was to determine the role of DJ-1 in PD. We first found that DJ-1 eliminated hydrogen peroxide in vitro by oxidizing itself. We then found that DJ-1 knockdown by short interfering RNA rendered SH-SY5Y neuroblastoma cells susceptible to hydrogen peroxide-, MPP+- or 6-hydroxydopamine-induced cell death and that cells harbouring mutant forms of DJ-1, including L166P, became susceptible to death in parallel with the loss of oxidized forms of DJ-1. These results clearly showed that DJ-1 has a role in the antioxidative stress reaction and that mutations of DJ-1 lead to cell death, which is observed in PD.  相似文献   

20.
Protein glutathionylation in response to oxidative stress can affect both the stability and activity of target proteins. Mitochondrial thymidine kinase 2 (TK2) is a key enzyme in mitochondrial DNA precursor synthesis. Using an antibody specific for glutathione (GSH), S-glutathionylated TK2 was detected after the addition of glutathione disulfide (GSSG) but not GSH. This was reversed by the addition of dithiothreitol, suggesting that S-glutathionylation of TK2 is reversible. Site-directed mutagenesis of the cysteine residues and subsequent analysis of mutant enzymes demonstrated that Cys-189 and Cys-264 were specifically glutathionylated by GSSG. These cysteine residues do not appear to be part of the active site, as demonstrated by kinetic studies of the mutant enzymes. Treatment of isolated rat mitochondria with hydrogen peroxide resulted in S-glutathionylation of added recombinant TK2. Treatment of intact cells with hydrogen peroxide led to reduction of mitochondrial TK2 activity and protein levels, as well as S-glutathionylation of TK2. Furthermore, the addition of S-glutathionylated recombinant TK2 to mitochondria isolated from hydrogen peroxide-treated cells led to degradation of the S-glutathionylated TK2, which was not observed with unmodified TK2. S-Glutathionylation on Cys-189 was responsible for the observed selective degradation of TK2 in mitochondria. These results strongly suggest that oxidative damage-induced S-glutathionylation and degradation of TK2 have significant impact on mitochondrial DNA precursor synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号