首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Surgical treatment of vascular disease has become common, creating the need for a readily available, small-diameter vascular graft. However, the use of synthetic materials is limited to grafts larger than 5-6 mm because of the frequency of occlusion observed with smaller-diameter prosthetics. An alternative to synthetic materials would be a biomaterial that could be used in the design of a tissue-engineered graft. We demonstrate that a small-diameter (4 mm) graft constructed from a collagen biomaterial derived from the submucosa of the small intestine and type I bovine collagen has the potential to integrate into the host tissue and provide a scaffold for remodeling into a functional blood vessel. The results obtained using a rabbit arterial bypass model have shown excellent hemostasis and patency. Furthermore, within three months after implantation, the collagen grafts were remodeled into cellularized vessels that exhibited physiological activity in response to vasoactive agents.  相似文献   

2.
For the treatment of vascular disease, the major cause of death in Western society, there is an urgent need for tissue-engineered, biocompatible, small calibre artery substitutes that restore biological function. Vascular tissue engineering of such grafts involves the development of compliant synthetic or biomaterial scaffolds that incorporate vascular cells and extracellular matrix. Elastic fibres are major structural elements of arterial walls that can enhance vascular graft design and patency. In blood vessels, they endow vessels with the critical property of elastic recoil. They also influence vascular cell behaviour through direct interactions and by regulating growth factor activation. This review addresses physiological elastic fibre assembly and contributions to vessel structure and function, and how elastic fibre biology is now being exploited in small diameter vascular graft design.  相似文献   

3.
Tissue engineering of vascular grafts.   总被引:8,自引:0,他引:8  
A Ratcliffe 《Matrix biology》2000,19(4):353-357
The challenge of tissue engineering blood vessels with the mechanical properties of native vessels, and with the anti-thrombotic properties required is immense. Recent advances, however, indicate that the goal of providing a tissue-engineered vascular graft that will remain patent in vivo for substantial periods of time, is achievable. For instance, collagen gels have been used to fabricate a tissue in vitro that is representative of a native vessel: an acellular collagen tubular structure, when implanted as a vascular graft, was able to function, and to become populated with host cells. A completely cellular approach culturing cells into tissue sheets and wrapping these around a mandel was able to form a layered tubular structure with impressive strength. Culture of cells onto a biodegradable scaffold within a dynamic bioreactor, generated a tissue-engineered vascular graft with substantial stiffness and, when lined with endothelial cells, was able to remain patent for up to 4 weeks in vivo. In our experiments, use of a non-degradable polyurethane scaffold and culture with smooth muscle cells generated a construct with mechanical properties similar to native vessels. This composite tissue engineered vascular graft with an endothelial layer formed using fluid shear stress to align the endothelial cells, was able to remain patent with an neointima for up to 4 weeks. These results show that tissue engineering of vascular grafts has true potential for application in the clinical situation.  相似文献   

4.
For years intensive research has been done to improve the hemocompatibility of blood contacting vascular devices. Despite the enormous progress in physicochemical surface optimization technologies, the native endothelium still represents the ideal surface for blood contact. Numerous tissue engineering strategies aspired towards the endothelialization of graft surfaces to generate a non-thrombogenic barrier on artificial materials. A paradigm change in surface modification concepts is the in vivo endothelialization of vascular grafts by capturing circulating endothelial progenitor cells (EPCs) directly from the blood stream via biofunctionalized implant materials. Thereby, capture molecules are immobilized on artificial vascular grafts to mimic a pro-homing substrate for EPCs. In this review, different coating strategies for in vivo capturing of EPCs on synthetic implants are discussed. This therapeutic concept opens a new chapter in regenerative medicine by realizing the vision that every patient seeds his implants with his own progenitor cells to make the synthetic grafts unrecognizable for the body's rejection mechanisms.  相似文献   

5.
Drug releasing systems in cardiovascular tissue engineering   总被引:1,自引:0,他引:1  
Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date.  相似文献   

6.
Perivascular fat, the cushion of adipose tissue surrounding blood vessels, possesses dilator, anti-contractile and constrictor actions. The majority of these effects have been demonstrated in vitro and may depend on the vessel and/or the experimental method or species used. In general, the relaxant effect of perivascular adipose tissue is local and may be either endothelium-dependent or endothelium-independent. However, nerve stimulation studies show that, in general, perivascular adipose tissue (PVAT) has an anti-contractile vascular effect likely to involve an action of the autonomic vascular nerves. Apart from a direct effect of perivascular fat-derived factors on bypass conduits, an interaction with a number of neurotransmitters and other agents may play an important role in graft performance. Although the vascular effects of PVAT are now well-established there is a lack of information regarding the role and/or involvement of peripheral nerves including autonomic nerves. For example, are perivascular adipocytes innervated and does PVAT affect neuronal control of vessels used as grafts? To date there is a paucity of electrophysiological studies into nerve-perivascular fat control. This review provides an overview of the vascular actions of PVAT, focussing on its potential relevance on blood vessels used as bypass grafts. In particular, the anatomical relationship between the perivascular nerves and fat are considered and the role of the perivascular-nerve/fat axis in the performance of bypass grafts is also discussed.  相似文献   

7.
Tissue engineering of small diameter (<5?mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.  相似文献   

8.
Tissue engineering techniques particularly using electrospun scaffolds have been intensively used in recent years for the development of small diameter vascular grafts. However, the development of a completely successful scaffold that fulfills multiple requirements to guarantee complete vascular regeneration remains challenging. In this study, a hydrophilic and compliant polyurethane namely Tecophilic (TP) blended with gelatin (gel) at a weight ratio of 70:30 (TP(70)/gel(30)) was electrospun to fabricate a tubular composite scaffold with biomechanical properties closely simulating those of native blood vessels. Hydrophilic properties of the composite scaffold induced non‐thrombogenicity while the incorporation of gelatin molecules within the scaffold greatly improved the capacity of the scaffold to serve as an adhesive substrate for vascular smooth muscle cells (SMCs), in comparison to pure TP. Preservation of the contractile phenotype of SMCs seeded on electrospun TP(70)/gel(30) was yet another promising feature of this scaffold. The nanostructured TP(70)/gel(30) demonstrated potential feasibility toward functioning as a vascular graft. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1165–1180, 2014.  相似文献   

9.
Vascular functions are regulated not only by chemical mediators, such as hormones, cytokines, and neurotransmitters, but by mechanical hemodynamic forces generated by blood flow and blood pressure. The mechanical force-mediated regulation is based on the ability of vascular cells, including endothelial cells and smooth muscle cells, to recognize fluid mechanical forces, i.e., the shear stress produced by flowing blood and the cyclic strain generated by blood pressure, and to transmit the signals into the cell interior, where they trigger cell responses that involve changes in cell morphology, cell function, and gene expression. Recent studies have revealed that immature cells, such as endothelial progenitor cells (EPCs) and embryonic stem (ES) cells, as well as adult vascular cells, respond to fluid mechanical forces. Shear stress and cyclic strain promote the proliferation and differentiation of EPCs and ES cells into vascular cells and enhance their ability to form new vessels. Even more recently, attempts have been made to apply fluid mechanical forces to EPCs and ES cells cultured on polymer tubes and develop tissue-engineered blood vessel grafts that have a structure and function similar to that of blood vessels in vivo. This review summarizes the current state of knowledge concerning the mechanobiological responses of stem/progenitor cells and its potential applications to tissue engineering.  相似文献   

10.
In the field of arterial vascular reconstructions there is an increasing need for functional small-diameter artificial grafts (inner diameter < 6mm). When autologous replacement vessels are not available, for example because of the bad condition of the vascular system in the patient, the surgeon has no other alternative than to implant a synthetic polymer-based vessel. After implantation the initial major problem concerning these vessels is the almost immediate occlusion, due to blood coagulation and platelet deposition, under the relatively low flow conditions. As the search for the perfect bio-inert polymer has not revealed a material with suitable properties for this application, improved performance of small-diameter artificial blood vessels is now being sought in the biological field. The poor blood-compatibility of an artificial vascular graft is not simply because of its coagulation-stimulating or platelet-activating properties, but more due to its inability to actively participate in the prevention of blood coagulation and platelet deposition. As these functions are naturally performed by endothelial cells, the utilization of these cells seems inevitable for the construction of a functional small-diameter artificial blood vessels. This review describes the current status of the use of endothelial cells to improve the performance of artificial vascular prostheses.  相似文献   

11.
Principals of neovascularization for tissue engineering   总被引:31,自引:0,他引:31  
The goals in tissue engineering include the replacement of damaged, injured or missing body tissues with biological compatible substitutes such as bioengineered tissues. However, due to an initial mass loss after implantation, improved vascularization of the regenerated tissue is essential. Recent advances in understanding the process of blood vessel growth has offered significant tools for therapeutic neovascularization. Several angiogenic growth factors including vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (bFGF) were used for vascularization of ischemic tissues. Three approaches have been used for vascularization of bioengineered tissue: incorporation of angiogenic factors in the bioengineered tissue, seeding endothelial cells with other cell types and prevascularization of matrices prior to cell seeding. This paper reviews the process of blood vessel growth and tissue vascularization, and discuss strategies for efficient vascularization of engineered tissues.  相似文献   

12.
Stahl A  Wu X  Wenger A  Klagsbrun M  Kurschat P 《FEBS letters》2005,579(24):5338-5342
Survival of tissue transplants generated in vitro is strongly limited by the slow process of graft vascularization in vivo. A method to enhance graft vascularization is to establish a primitive vascular plexus within the graft prior to transplantation. Endothelial cells (EC) cultured as multicellular spheroids within a collagen matrix form sprouts resembling angiogenesis in vitro. However, osteoblasts integrated into the graft suppress EC sprouting. This inhibition depends on direct cell-cell-interactions and is characteristic of mature ECs isolated from preexisting vessels. In contrast, sprouting of human blood endothelial progenitor cells is not inhibited by osteoblasts, making these cells suitable for tissue engineering of pre-vascularized bone grafts.  相似文献   

13.
生物血管异种移植的初步研究   总被引:2,自引:1,他引:1  
目的为了寻求一种新的小口径血管代用品,建立异种移植的动物实验模型,以观察异种移植物的安全性、可靠性、通畅性及组织学改变。方法共采用17只杂种雌性犬,实验组10只,植入经环氧化物处理的猪血管移植物;对照组7只,植入人造血管。手术方法为右侧股动静脉瘘。术后通过超声和血管造影方法来观察移植血管的通畅性,并在术后3月将移植物取出,进行病理学检查,观察移植前后移植物的组织学改变。结果术后第一周、二周行Doppler超声检查结果,两组动静脉瘘均通畅,2周内血管通畅率为100%。术后3个月动脉造影检查后,生物血管组(PG)通畅5只,通畅率62.5%,e-PTFE组通畅4只,通畅率66.7%。两组数据统计学处理,差异无显著性(P>0.05)。术后3月对移植物取材,进行光镜及扫描电镜病理学检查,通畅的生物血管吻合口无狭窄,吻合部位有新的内膜覆盖,周围组织无钙化,有新生的内皮细胞覆盖。结论经环氧化物处理的猪的血管移植物(PG)生物血管作为异种移植物,生物相容性好,具有一定的可行性。  相似文献   

14.
Vascular development requires the assembly of precursor cells into blood vessels, but how embryonic vessels are assembled is not well understood. To determine how vascular cells migrate and assemble into vessels of the trunk and limb, marked somite-derived angioblasts were followed in developing embryos. Injection of avian somites with the cell-tracker DiI showed that somite-derived angioblasts in unperturbed embryos migrated extensively and contributed to trunk and limb vessels. Mouse-avian chimeras with mouse presomitic mesoderm grafts had graft-derived endothelial cells in blood vessels at significant distances from the graft, indicating that mouse angioblasts migrated extensively in avian hosts. Mouse graft-derived endothelial cells were consistently found in trunk vessels, such as the perineural vascular plexus, the cardinal vein, and presumptive intersomitic vessels, as well as in vessels of the limb and kidney rudiment. This reproducible pattern of graft colonization suggests that avian vascular patterning cues for trunk and limb vessels are recognized by mammalian somitic angioblasts. Mouse-quail chimeras stained with both the quail vascular marker QH1 and the mouse vascular marker PECAM-1 had finely chimeric vessels, with graft-derived mouse cells interdigitated with quail vascular cells in most vascular beds colonized by graft cells. Thus, diverse trunk and limb blood vessels have endothelial cells that developed from migratory somitic angioblasts, and assembly of these vessels is likely to have a large vasculogenic component.  相似文献   

15.
Vascular surgeries such as coronary artery bypass require small diameter vascular grafts with properties that are not available at this time. Approaches using synthetic biomaterials have been not completely successful in producing non-thrombogenic grafts with inner diameters less than 6 mm, and there is a need for new biomaterials and graft designs. We propose silk fibroin as a microvascular graft material and describe tubular silk scaffolds that demonstrate improved properties over existing vascular graft materials. Silk tubes produced using an aqueous gel spinning technique were first assessed in vitro in terms of thrombogenicity (thrombin and fibrinogen adsorption, platelet adhesion) and vascular cell responses (endothelial and smooth muscle cell attachment and proliferation) in comparison with polytetrafluoroethylene (PTFE), a synthetic material most frequently used for vascular grafts. Silk tubes were then implanted into the abdominal aortas of Sprague-Dawley rats. At time points of 2 weeks and 4 weeks post implantation, tissue outcomes were assessed through gross observation (acute thrombosis, patency) and histological staining (H&E, Factor VIII, smooth muscle actin). Over the 4-week time period, we observed graft patency and endothelial cell lining of the lumen surfaces. These results demonstrate the feasibility of using silk fibroin as a vascular graft material and some advantages of silk tubes over the currently used synthetic grafts.  相似文献   

16.
Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its ligand ephrinB2. To study their function, EphB4 variants were overexpressed in blood vessels of tumor xenografts. Our studies revealed that EphB4 acts as a negative regulator of blood vessel branching and vascular network formation, switching the vascularization program from sprouting angiogenesis to circumferential vessel growth. In parallel, EphB4 reduces the permeability of the tumor vascular system via activation of the angiopoietin-1/Tie2 system at the endothelium/pericyte interface. Furthermore, overexpression of EphB4 variants in blood vessels during (i) vascularization of non-neoplastic cell grafts and (ii) retinal vascularization revealed that these functions of EphB4 apply to postnatal, non-neoplastic angiogenesis in general. This implies that both neoplastic and non-neoplastic vascularization is driven not only by a vascular initiation program but also by a vascular patterning program mediated by guidance molecules.  相似文献   

17.
Tissue-engineered vascular grafts (TEVGs) hold great promise for the improvement of outcomes in pediatric patients with congenital cardiac anomalies. Currently used synthetic grafts have several limitations, including thrombogenicity, increased risk of infection, and lack of growth potential. The first pilot clinical trial of TEVGs demonstrated the feasibility of this new technology and revealed an excellent safety profile. However, long-term follow-up from this trial revealed the primary graft-related complication to be stenosis, affecting 16 percent of grafts within 7 years post-implantation. In order to determine the mechanism behind TEVG stenosis and ultimately to create improved second generation TEVGs, our group has returned to the bench to study vascular neotissue formation in a variety of large and small animal models. The purpose of this report is to review the recent advances in the understanding of neotissue formation and vascular tissue engineering.  相似文献   

18.
It is the ultimate goal of tissue engineering: an autologous tissue engineered vascular graft (TEVG) that is immunologically compatible, nonthrombogenic, and can grow and remodel. Currently, native vessels are the preferred vascular conduit for procedures such as coronary artery bypass (CABG) or peripheral bypass surgery. However, in many cases these are damaged, have already been harvested, or are simply unusable. The use of synthetic conduits is severely limited in smaller diameter vessels due to increased incidence of thrombosis, infection, and graft failure. Current research has therefore energetically pursued the development of a TEVG that can incorporate into a patient's circulatory system, mimic the vasoreactivity and biomechanics of the native vasculature, and maintain long-term patency.  相似文献   

19.
Conventionally used vascular grafts such as polyester (Dacron) or expanded polytetrafluoroethylene perform inadequately as small-diameter vascular bypass grafts (SDBGs). SDBGs, which can maintain long-term patency and those that could potentially evolve with the somatic growth, are highly desirable in vascular surgery and thus research into tissue-engineered blood vessels (TEBVs) is of keen interest. A TEBV was developed by seeding endothelial cells onto a collagen matrix that was cross-linked and contracted by smooth muscle cells (SMCs). A polyester graft served as a scaffold. Recovery studies (12 TEBVs and seven controls) were carried out to assess in vivo endothelialization and long-term patency of TEBVs. Hemodynamic observations indicated para-anastomotic turbulences and high shear stress at anastomosis. Recovery studies demonstrated confluent endothelialization, thrombus-free surfaces, and patent TEBVs in all cases. Graft incorporation and neovascularization of the scaffold occurred in both hybrid and control grafts. However, thickened neointima formation occurred in TEBV grafts, which was most likely caused by the rigidity of polyester scaffold. Significant perigraft inflammatory changes could be observed in both TEBVs and control grafts at 1, 4, and 8 weeks. In conclusion, the TEBVs demonstrated satisfactory performance as an infra-renal-aortic graft in a porcine model. The TEBV serves as a promising model and facilitates the development of a TEBV in a clinical setting, potentially with human stem cells and with more biocompatible, biodegradable scaffolds that are mechanically more compliant with natural vessels.  相似文献   

20.
Summary The availability of small-diameter blood vessels remains a significant problem in vascular reconstruction. In small-diameter blood vessels, synthetic grafts resulted in low patency; the addition of endothelial cells (EC) has clearly improved this parameter, thereby proving the important contribution of the cellular component to the functionality of any construct. Because the optimal source of cells should be autologous, the adaptation of existing methods for the isolation of all the vascular cell types present in a single and small biopsy sample, thus reducing patient’s morbidity, is a first step toward future clinical applications of any newly developed tissue-engineered blood vessel. This study describes such a cell-harvesting procedure from vein biopsy samples of canine and human origin. For this purpose, we combined preexisting mechanical methods for the isolation of the three vascular cell types: EC by scraping of the endothelium using a scalpel blade, vascular smooth muscle cells (VSMC), and perivascular fibroblasts according to the explant method. Once in culture, cells rapidly grew with the high level of enrichment. The morphological, phenotypical, and functional expected criteria were maintained: EC formed cobblestone colonies, expressed the von Willebrand factor, and incorporated acetylated low-density lipoprotein (LDL); VSMC were elongated and contracted when challenged by vasoactive agents; perivascular fibroblasts formed a mechanically resistant structure. Thus, we demonstrated that an appropriate combination of preexisting harvesting methods is suitable to isolate simultaneously the vascular cell types present in a single biopsy sample. Their functional characteristics indicated that they were suitable for the cellularization of synthetic prosthesis or the reconstruction of functional multicellular autologous organs by tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号