共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication licensing factors strictly regulate the DNA replication origin licensing process to guarantee the stability of the genome. Numerous experimental studies have recently demonstrated that the replication licensing factors as oncogenes are essential for the occurrence and development of cancers. Drug resistance, being one of the main characteristics of cancer stem cells, can cause a high recurrence rate and a low survival rate in patients with different cancers. However, the function of the replication licensing factors in cancer stemness remains unclear. The following article highlights the most recent research on DNA replication origin licensing factors in cancer and their function in anti-cancer drug resistance. Moreover, this article proposes a new perspective that replication licensing factors as chemotherapy shield affect anti-cancer drug resistance by promoting the stemness of cancer cells. 相似文献
2.
Shintaro Taki Haruhiko Kamada Masaki Inoue Kazuya Nagano Yohei Mukai Kazuma Higashisaka Yasuo Yoshioka Yasuo Tsutsumi Shin-ichi Tsunoda 《PloS one》2015,10(12)
Ephrin receptor A10 (EphA10), a transmembrane receptor that binds to ephrin, is a newly identified breast cancer marker protein that has also been detected in HER2-negative tissue. In this study, we report creation of a novel bispecific antibody (BsAb) binding both EphA10 and CD3, thereby forming a bridge between antigens expressed on both tumor and immune cells and promoting recognition of tumor cells by immune cells and redirection of cytotoxic T cells (CTL). This BsAb (EphA10/CD3) was expressed in supernatants of BsAb gene-transfected cells as monomeric and dimeric molecules. Redirected T-cell lysis was observed when monomeric and dimeric BsAb were added to EphA10-overexpressing tumor cells in vitro. Furthermore, dimeric BsAb (EphA10/CD3) was more cytotoxic than monomeric BsAb, with efficient tumor cell lysis elicited by lower concentrations (≤10−1 μg/mL) and a lower effector to target (E/T) cell ratio (E/T = 2.5). Dimeric BsAb (EphA10/CD3) also showed significant anti-tumor effects in human xenograft mouse models. Together, these results revealed opportunities to redirect the activity of CTL towards tumor cells that express EphA10 using the BsAb (EphA10/CD3), which could be tested in future clinical trials as a novel and potent therapeutic for breast cancer tumors. 相似文献
3.
HMGB1 is a member of highly conserved high mobility group protein superfamily with intracellular and extracellular distribution. Abnormal HMGB1 levels are frequently manifested in various malignant diseases, including breast cancer. Numerous studies have revealed the clinical value of HMGB1 in the diagnosis and therapy of breast cancer. However, the dual function of pro- and anti-tumor makes HMGB1 in cancer progression requires more profound understanding. This review summarizes the functions and mechanisms of HMGB1 on regulating breast cancer, including autophagy, immunogenic cell death, and interaction with the tumor microenvironment. These functions determine the strategies for the development of chemotherapy, radiotherapy, immunotherapy and combination therapies by targeting HMGB1 in breast cancer. Defining the mechanisms of HMGB1 on regulating breast cancer development and progression will facilitate the application of HMGB1 as a therapeutic target for breast cancer. 相似文献
4.
We investigated the expression status of periostin in breast cancer stem cells and its clinical implications in order to lay a foundation for managing breast cancer. CD44+/CD24−/line- tumor cells (CSC) from clinical specimens were sorted using flow cytometry. Periostin expression status was detected in CSC cells and 1,086 breast cancer specimens by Western blot and immunohistochemistry staining, with the CSC ratio determined by immunofluorescence double staining. The relationship between the periostin protein and clinico-pathological parameters and prognosis was subsequently determined. As a result, CSC cells are more likely to generate new tumors in mice and cell microspheres that are deficient in NOD/SCID compared to the control group. Periostin protein was expressed higher in CSC cells compared to the control cells and was found to be related to CSC chemotherapy resistance. Moreover, periostin expression was found to be related to the CSC ratio in 1,086 breast cancer specimens (P = 0.001). In total, 334 (30.76%) of the 1,086 breast cases showed high periostin expression. After universal and Spearman regression correlation analysis, periostin was observed to be related to histological grade, CSC ratio, lymph node metastasis, tumor size, and triple-negative breast cancer (all P<0.05). Furthermore, periostin was shown to attain a significantly more distant bone metastasis and worse disease-specific survival than those with none or low-expressed periostin protein (P = 0.001). In the Cox regression test, periostin protein was detected as an independent prognostic factor (P = 0.001). In conclusion, periostin was found to be related to the CSC and an independent prognostic factor for breast cancer. It is also perhaps a potential target to breast cancer. 相似文献
5.
6.
Ruei-Min Lu Min-Shan Chen De-Kuan Chang Chien-Yu Chiu Wei-Chuan Lin Shin-Long Yan Yi-Ping Wang Yuan-Sung Kuo Chen-Yun Yeh Albert Lo Han-Chung Wu 《PloS one》2013,8(6)
Targeted delivery of drugs to tumors represents a significant advance in cancer diagnosis and therapy. Therefore, development of novel tumor-specific ligands or pharmaceutical nanocarriers is highly desirable. In this study, we utilized phage display to identify a new targeting peptide, SP90, which specifically binds to breast cancer cells, and recognizes tumor tissues from breast cancer patients. We used confocal and electron microscopy to reveal that conjugation of SP90 with liposomes enables efficient delivery of drugs into cancer cells through endocytosis. Furthermore, in vivo fluorescent imaging demonstrated that SP90-conjugated quantum dots possess tumor-targeting properties. In tumor xenograft and orthotopic models, SP90-conjugated liposomal doxorubicin was found to improve the therapeutic index of the chemotherapeutic drug by selectively increasing its accumulation in tumors. We conclude that the targeting peptide SP90 has significant potential in improving the clinical benefits of chemotherapy in the treatment and the diagnosis of breast cancer. 相似文献
7.
Ilaria Naldi Monia Taranta Lisa Gherardini Gualtiero Pelosi Federica Viglione Settimio Grimaldi Luca Pani Caterina Cinti 《PloS one》2014,9(5)
Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours. 相似文献
8.
Zannel Blanchard Nicole Mullins Pavani Ellipeddi Janice M. Lage Shawn McKinney Rana El-Etriby Xu Zhang Raphael Isokpehi Brenda Hernandez Wael M. ElShamy 《PloS one》2014,9(4)
Breast cancer is the second leading cause of cancer-related deaths in women. Triple negative breast cancer (TNBC) is an aggressive subtype that affects 10–25% mostly African American women. TNBC has the poorest prognosis of all subtypes with rapid progression leading to mortality in younger patients. So far, there is no targeted treatment for TNBC. To that end, here we show that c-Abl is one of several tyrosine kinases that phosphorylate and activate geminin’s ability to promote TNBC. Analysis of >800 breast tumor samples showed that geminin is overexpressed in ∼50% of all tumors. Although c-Abl is overexpressed in ∼90% of all tumors, it is only nuclear in geminin overexpressing tumors. In geminin-negative tumors, c-Abl is only cytoplasmic. Inhibiting c-Abl expression or activity (using imatinib or nilotinib) prevented geminin Y150 phosphorylation, inactivated the protein, and most importantly converted overexpressed geminin from an oncogene to an apoptosis inducer. In pre-clinical orthotopic breast tumor models, geminin-overexpressing cells developed aneuploid and invasive tumors, which were suppressed when c-Abl expression was blocked. Moreover, established geminin overexpressing orthotopic tumors regressed when treated with imatinib or nilotinib. Our studies support imatinib/nilotonib as a novel treatment option for patients with aggressive breast cancer (including a subset of TNBCs)-overexpressing geminin and nuclear c-Abl. 相似文献
9.
Sawada N Kusudo T Sakaki T Hatakeyama S Hanada M Abe D Kamao M Okano T Ohta M Inouye K 《Biochemistry》2004,43(15):4530-4537
Our previous study revealed that human CYP24A1 catalyzes a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways that used both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) as substrates, while rat CYP24A1 showed extreme predominance of the C-24 over C-23 hydroxylation pathway [Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., Ohyama, Y. and Inouye, K. (2000) Eur. J. Biochem. 267, 6158-6165]. In this study, by using the Escherichia coli expression system for human CYP24A1, we identified 25,26,27-trinor-23-ene-D(3) and 25,26,27-trinor-23-ene-1alpha(OH)D(3) as novel metabolites of 25(OH)D(3) and 1alpha,25(OH)(2)D(3), respectively. These metabolites appear to be closely related to the C-23 hydroxylation pathway, because human CYP24A1 produces much more of these metabolites than does rat CYP24A1. We propose that the C(24)-C(25) bond cleavage occurs by a unique reaction mechanism including radical rearrangement. Namely, after hydrogen abstraction of the C-23 position of 1alpha,25(OH)(2)D(3), part of the substrate-radical intermediate is converted into 25,26,27-trinor-23-ene-1alpha(OH)D(3), while a major part of them is converted into 1alpha,23,25(OH)(3)D(3). Because the C(24)-C(25) bond cleavage abolishes the binding affinity of 1alpha,25(OH)D(3) for the vitamin D receptor, this reaction is quite effective for inactivation of 1alpha,25(OH)D(3). 相似文献
10.
Xiao-Feng He Jie Wei Zhi-Zhong Liu Jian-Jun Xie Wei Wang Ya-Ping Du Yu Chen Hui-Qiang Si Qing Liu Li-Xia Wu Wu Wei 《PloS one》2014,9(8)
Background
The previous published data on the association between CYP1A2*F (rs762551), CYP1B1 Leu432Val (rs1056836), Asn453Ser (rs180040), and Arg48Gly (rs10012) polymorphisms and colorectal cancer risk remained controversial.Methodology/Principal Findings
The purpose of this study is to evaluate the role of CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly genotypes in colorectal cancer susceptibility. We performed a meta-analysis on all the eligible studies that provided 5,817 cases and 6,544 controls for CYP1A2*F (from 13 studies), 9219 cases and 10406 controls for CYP1B1 Leu432Val (from 12 studies), 6840 cases and 7761 controls for CYP1B1 Asn453Ser (from 8 studies), and 4302 cases and 4791 controls for CYP1B1Arg48Gly (from 6 studies). Overall, no significant association was found between CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly and colorectal cancer risk when all the eligible studies were pooled into the meta-analysis. And in the subgroup by ethnicity and source of controls, no evidence of significant association was observed in any subgroup analysis.Conclusions/Significance
In summary, this meta-analysis indicates that CYP1A2*F, CYP1B1 Leu432Val, Asn453Ser, and Arg48Gly polymorphisms do not support an association with colorectal cancer, and further studies are needed to investigate the association. In addition, our work also points out the importance of new studies for CYP1A2*F polymorphism in Asians, because high heterogeneity was found (dominant model: I 2 = 81.3%; heterozygote model: I 2 = 79.0). 相似文献11.
12.
Henrik C. Horváth Péter Lakatos János P. Kósa Krisztián Bácsi Katalin Borka Giovanna Bises Thomas Nittke Pamela A. Hershberger Gábor Speer Enik? Kállay 《The journal of histochemistry and cytochemistry》2010,58(3):277-285
The main autocrine/paracrine role of the active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25-D3), is inhibition of cell growth and induction of cell differentiation and/or apoptosis. Synthesis and degradation of the secosteroid occurs not only in the kidney but also in normal tissue or malignant extrarenal tissues such as the colon. Because 25-hydroxyvitamin D3 24-hydroxylase (CYP24A1) is considered to be the main enzyme determining the biological half-life of 1,25-D3, we have examined expression of the CYP24A1 mRNA (by real-time RT-PCR) and protein (by immunohistochemistry) in normal human colon mucosa, colorectal adenomas, and adenocarcinomas in 111 patients. Although 76% of the normal and benign colonic tissue was either completely devoid of or expressed very low levels of CYP24A1, in the majority of the adenocarcinomas (69%), the enzyme was present at high concentrations. A parallel increased expression of the proliferation marker Ki-67 in the same samples suggests that overexpression of CYP24A1 reduced local 1,25-D3 availability, decreasing its antiproliferative effect. (J Histochem Cytochem 58:277–285, 2010) 相似文献
13.
诱杀受体3(DcR3)又称肿瘤坏死因子受体(TNFR)6B,是最近发现的TNFR超家族成员之一。DcR3是一种凋亡抑制蛋白,能够抑制肿瘤细胞凋亡,促进肿瘤细胞免疫逃避。研究显示,DcR3在人类正常分化组织中很少表达,却特异性表达在常见的肿瘤,它的表达上调可预示肿瘤恶性程度和预后。作为肿瘤分子标志物,体液及组织中高水平的DcR3表达能够辅助肿瘤诊断和治疗监测。应用分子生物技术可以抑制肿瘤细胞中DcR3的表达,从而诱导肿瘤细胞的凋亡。 相似文献
14.
Astrid Grottke Florian Ewald Tobias Lange Dominik N?rz Christiane Herzberger Johanna Bach Nicole Grabinski Lareen Gr?ser Frank H?ppner Bj?rn Nashan Udo Schumacher Manfred Jücker 《PloS one》2016,11(1)
Background
Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.Methods
The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.Results
Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.Conclusions
We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors. 相似文献15.
Zhenbin Chen Jinong Feng Carolyn H. Buzin Qiang Liu Lawrence Weiss Kemp Kernstine George Somlo Steve S. Sommer 《PloS one》2009,4(9)
Background
Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/ or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations.Methods and Findings
We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (107 copies of gDNA each) or in blood samples from 10 healthy individuals (107 copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10−7, with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput “gene pool” analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression.Conclusions
MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease. 相似文献16.
H. W. C. Ward 《BMJ (Clinical research ed.)》1973,1(5844):13-14
Tamoxifen (ICI 46474) was given by mouth to patients with advanced, recurrent, or metastatic breast carcinoma. At a dosage of 10 mg twice daily 60% of patients showed arrest or reversal of tumour growth. At a dosage of 20 mg twice daily 77% showed arrest or reversal of tumour growth. Side effects were usually trivial and their incidence was the same at both dose levels. No patients showed virilization of fluid retention. 相似文献
17.
18.
Astecker N Bobrovnikova EA Omdahl JL Gennaro L Vouros P Schuster I Uskokovic MR Ishizuka S Wang G Reddy GS 《Archives of biochemistry and biophysics》2004,431(2):261-270
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. 相似文献
19.
Background
Studies investigating the association between single-nucleotide polymorphisms (SNPs) of the cytochrome P450 1B1 (CYP1B1) and prostate cancer (PCa) risk report conflicting results. To derive a more precise estimation of the relationship between CYP1B1 polymorphisms and PCa risk, a meta-analysis was performed.Methodology/Principal Findings
A comprehensive literature search was conducted to identify all eligible studies of CYP1B1 polymorphisms and PCa risk. A total of 14 independent studies, including 6380 cases and 5807 controls, were identified. We investigated by meta-analysis the effects of 5 polymorphisms in CYP1B1 L432V (12 studies, 5999 cases, 5438 controls), R48G (6 studies, 1647 cases, 1846 controls), N453S (4 studies, 1407 cases, 1499 controls), −13C/T (4 studies, 1116 cases, 1114 controls), and A119S (4 studies, 1057 cases, 1018 controls). There was no evidence that L432V had significant association with PCa in overall population. After subgroup analyses by ethnicity, we found that L432V was significantly associated with PCa risk in Asians (additive: OR = 2.38, 95%CI = 1.31-4.33, P = 0.004; recessive: OR = 2.11, 95%CI = 1.17–3.79, P = 0.01; dominant: OR = 1.52, 95%CI = 1.14–2.01, P = 0.004; allelic: OR = 1.52, 95%CI = 1.20–1.92, P = 0.0006). When stratified by source of controls, significantly elevated PCa risk was found in all genetic models in population based studies (additive: OR = 1.34, 95%CI = 1.14–1.57, P = 0.0003; recessive: OR = 1.25, 95%CI = 1.09–1.43, P = 0.002; dominant: OR = 1.25, 95%CI = 1.11–1.41, P = 0.0002; allelic: OR = 1.18, 95%CI = 1.09–1.28, P<0.0001). For N453S, there was a significant association between N453S polymorphism and PCa risk in both overall population (dominant: OR = 1.18, 95%CI = 1.00–1.38, P = 0.04) and mixed population (domiant: OR = 1.31, 95%CI = 1.06–1.63, P = 0.01; allelic: OR = 1.27, 95%CI = 1.05–1.54, P = 0.01). For A119S, our analysis suggested that A119S was associated with PCa risk under recessive model in overall population (OR = 1.37, 95%CI = 1.04–1.80, P = 0.03).Conclusions
The results suggest that L432V, N453S, and A119S polymorphisms of CYP1B1 might be associated with the susceptibility of PCa. Further larger and well-designed multicenter studies are warranted to validate these findings. 相似文献20.
Li Li Xinlan Xu Liang Fang Yu Liu Yinghua Sun Mangli Wang Nanxi Zhao Zhonggui He 《AAPS PharmSciTech》2010,11(3):1054-1057
The aim of this work was to evaluate capability of site-specific delivery of a transdermal patch through determination of
letrozole in local tissues disposition in female mice. After transdermal administration, the letrozole levels in skin, muscle,
and plasma were 10.4–49.3 μg/g, 1.64–6.89 μg/g, and 0.35–1.64 μg/mL, respectively. However, after the mice received letrozole
suspension, the drug concentration of plasma and muscle were 0.20–4.80 μg/mL and 0.15–2.38 μg/g. There was even no drug determined
in skin through all experiments. Compared with oral administration, the transdermal patch for site-specific delivery of letrozole
could produce high drug concentrations in skin and muscle and meanwhile obtain low drug level in plasma. These findings show
that letrozole transdermal patch is an appropriate delivery system for application to the breast tumor region for site-specific
drug delivery to obtain a high local drug concentration and low circulating drug concentrations avoiding the risk of systemic
side effects. 相似文献