首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Neurotrophin 3 (Ntf3) is expressed in Sertoli cells and acts as a chemo-attractant for cell migration from the mesonephros into the developing testis, a process critical to the early morphological events of testis cord formation. The male sex-determining gene Sry initiates the process of testicular development. Sox9 is a key regulator of male sex determination and is directly regulated by SRY. Information on other downstream target genes of SRY is limited. The current study demonstrates an interaction of SRY with the Ntf3 promoter both in vitro and in vivo. The Ntf3 promoter in both rat and mouse contains at least one putative SRY binding site in the -0.6 kb promoter region. In a luciferase reporter assay system, both SRY and SOX9 stimulated the Ntf3 promoter in vitro through an interaction with this SRY-binding motif. In an immunoprecipitation-based pull-down assay, recombinant SRY protein bound the Ntf3 promoter fragment containing an intact SRY binding site, whereas the same protein did not interact with the fragment containing a mutated SRY motif. Specific antibodies against SRY were used in a chromatin immunoprecipitation (ChIP) assay of embryonic testis and were found to precipitate the Ntf3 promoter region. The SRY ChIP assay confirmed the direct interaction between SRY and the Ntf3 promoter in vivo during male sex determination. Observations suggest that SRY physically interacts with the Ntf3 promoter during male sex determination to coordinate cell migration in the testis to form testis cords.  相似文献   

3.
4.
In mammals, male sex is determined by the Y-chromosomal gene Sry (sex-determining region of Y chromosome). The expression of Sry and subsequently Sox9 (SRY box containing gene 9) in precursors of the supporting cell lineage results in the differentiation of these cells into Sertoli cells. Sertoli cells in turn orchestrate the development of all other male-specific cell types. To ensure that Sertoli cells differentiate in sufficient numbers to induce normal testis development, the early testis produces prostaglandin D(2) (PGD(2)), which recruits cells of the supporting cell lineage to a Sertoli cell fate. Here we show that the gene encoding prostaglandin D synthase (Pgds), the enzyme that produces PGD(2), is expressed in Sertoli cells immediately after the onset of Sox9 expression. Promoter analysis in silico and in vitro identified a paired SOX/SRY binding site. Interestingly, only SOX9, and not SRY, was able to bind as a dimer to this site and transactivate the Pgds promoter. In line with this, a transgenic mouse model showed that Pgds expression is not affected by ectopic Sry expression. Finally, chromatin immunoprecipitation proved that SOX9 but not SRY binds to the Pgds promoter in vivo.  相似文献   

5.
6.
7.
8.
Recently, we demonstrated that loss of Fgf9 results in a block of testis development and a male to female sex-reversed phenotype; however, the function of Fgf9 in sex determination was unknown. We now show that Fgf9 is necessary for two steps of testis development just downstream of the male sex-determining gene, Sry: (1) for the proliferation of a population of cells that give rise to Sertoli progenitors; and (2) for the nuclear localization of an FGF receptor (FGFR2) in Sertoli cell precursors. The nuclear localization of FGFR2 coincides with the initiation of Sry expression and the nuclear localization of SOX9 during the early differentiation of Sertoli cells and the determination of male fate.  相似文献   

9.
10.
11.
Since the discovery of SRY/SRY as a testis-determining gene on the mammalian Y chromosome in 1990, extensive studies have been carried out on the immediate target of SRY/SRY and genes functioning in the course of testis development. Comparative studies in non-mammalian vertebrates including birds have failed to find a gene equivalent to SRY/SRY, whereas they have suggested that most of the downstream factors found in mammals including SOX9 are also involved in the process of gonadal differentiation. Although a gene whose function is to trigger the cascade of gene expression toward gonadal differentiation has not been identified yet on either W or Z chromosomes of birds, a few interesting genes have been found recently on the sex chromosomes of chickens and their possible roles in sex determination or sex differentiation are being investigated. It is the purpose of this review to summarize the present knowledge of these sex chromosome-linked genes in chickens and to give perspectives and point out questions concerning the mechanisms of avian sex determination.  相似文献   

12.
The first morphological event after initiation of male sex determination is seminiferous cord formation in the embryonic testis. Cord formation requires migration of pre-peritubular myoid cells from the adjacent mesonephros. The embryonic Sertoli cells are the first testicular cells to differentiate and have been shown to express neurotropin-3 (NT3), which can act on high-affinity trkC receptors expressed on migrating mesonephros cells. NT3 expression is elevated in the embryonic testis during the time of seminiferous cord formation. A trkC receptor tyrophostin inhibitor, AG879, was found to inhibit seminiferous cord formation and mesonephros cell migration. Beads containing NT3 were found to directly promote mesonephros cell migration into the gonad. Beads containing other growth factors such as epidermal growth factor (EGF) did not influence cell migration. At male sex determination the SRY gene promotes testis development and the expression of downstream sex differentiation genes such as SOX-9. Inhibition of NT3 actions caused a reduction in the expression of SOX-9. Combined observations suggest that when male sex determination is initiated, the developing Sertoli cells express NT3 as a chemotactic agent for migrating mesonephros cells, which are essential to promote embryonic testis cord formation and influence downstream male sex differentiation.  相似文献   

13.
The decision of the bi-potential gonad to develop into either a testis or ovary is determined by the presence or absence of the Sex-determining Region gene on the Y chromosome (SRY). Since its discovery, almost 13 years ago, the molecular role that SRY plays in initiating the male sexual development cascade has proven difficult to ascertain. While biochemical studies of clinical mutants and mouse genetic models have helped in our understanding of SRY function, no direct downstream targets of SRY have yet been identified. There are, however, a number of other genes of equal importance in determining sexual phenotype, expressed before and after expression of SRY. Of these, one has proven of central importance to mammals and vertebrates, SOX9. This review describes our current knowledge of SRY and SOX9 structure and function in the light of recent key developments.  相似文献   

14.
15.
16.
SRY, the mammalian Y-chromosomal testis-determining gene, induces male sex determination. Recent studies in mice reveal that the major role of SRY is to achieve sufficient expression of the related gene Sox9, in order to induce Sertoli cell differentiation, which in turn drives testis formation. Here, we discuss the cascade of events triggered by SRY and the mechanisms that reinforce the differentiation of the testes in males while actively inhibiting ovarian development.  相似文献   

17.
SRY, a Y chromosome-encoded DNA-binding protein, is required for testis organogenesis in mammals. Expression of the SRY gene in the genital ridge is followed by diverse early cell events leading to Sertoli cell determination/differentiation and subsequent sex cord formation. Little is known about SRY regulation and its mode of action during testis development, and direct gene targets for SRY are still lacking. In this study, we demonstrate that interaction of the human SRY with histone acetyltransferase p300 induces the acetylation of SRY both in vitro and in vivo at a single conserved lysine residue. We show that acetylation participates in the nuclear localisation of SRY by increasing SRY interaction with importin beta, while specific deacetylation by HDAC3 induces a cytoplasmic delocalisation of SRY. Finally, by analysing p300 and HDAC3 expression profiles during both human or mouse gonadal development, we suggest that acetylation and deacetylation of SRY may be important mechanisms for regulating SRY activity during mammalian sex determination.  相似文献   

18.
Ovotestis development in B6-XYPOS mice provides a rare opportunity to study the interaction of the testis- and ovary-determining pathways in the same tissue. We studied expression of several markers of mouse fetal testis (SRY, SOX9) or ovary (FOXL2, Rspo1) development in B6-XYPOS ovotestes by immunofluorescence, using normal testes and ovaries as controls. In ovotestes, SOX9 was expressed only in the central region where SRY is expressed earliest, resulting in testis cord formation. Surprisingly, FOXL2-expressing cells also were found in this region, but individual cells expressed either FOXL2 or SOX9, not both. At the poles, even though SOX9 was not up-regulated, SRY expression was down-regulated normally as in XY testes, and FOXL2 was expressed from an early stage, demonstrating ovarian differentiation in these areas. Our data (1) show that SRY must act within a specific developmental window to activate Sox9; (2) challenge the established view that SOX9 is responsible for down-regulating Sry expression; (3) disprove the concept that testicular and ovarian cells occupy discrete domains in ovotestes; and (4) suggest that FOXL2 is actively suppressed in Sertoli cell precursors by the action of SOX9. Together these findings provide important new insights into the molecular regulation of testis and ovary development.  相似文献   

19.
20.
SRY and the standoff in sex determination   总被引:3,自引:0,他引:3  
SRY was identified as the mammalian sex-determining gene more than 15 yr ago and has been extensively studied since. Although many of the pathways regulating sexual differentiation have been elucidated, direct downstream targets of SRY are still unclear, making a top down approach difficult. However, recent work has demonstrated that the fate of the gonad is actively contested by both male-promoting and female-promoting signals. Sox9 and Fgf9 push gonads towards testis differentiation. These two genes are opposed by Wnt4, and possibly RSPO1, which push gonads toward ovary differentiation. In this review, we will discuss the history of the field, current findings, and exciting new directions in vertebrate sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号