首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of genomic sequences of many organisms has opened new challenges in many aspects particularly in terms of genome analysis. Sequence extraction is a vital step and many tools have been developed to solve this issue. These tools are available publically but have limitations with reference to the sequence extraction, length of the sequence to be extracted, organism specificity and lack of user friendly interface. We have developed a java based software package having three modules which can be used independently or sequentially. The tool efficiently extracts sequences from large datasets with few simple steps. It can efficiently extract multiple sequences of any desired length from a genome of any organism. The results are crosschecked by published data.

Availability

URL 1: http://ww3.comsats.edu.pk/bio/ResearchProjects.aspxURL 2: http://ww3.comsats.edu.pk/bio/SequenceManeuverer.aspx  相似文献   

2.
3.
We present an efficient computational architecture designed using supervised machine learning model to predict amyloid fibril forming protein segments, named AmylPepPred. The proposed prediction model is based on bio-physio-chemical properties of primary sequences and auto-correlation function of their amino acid indices. AmylPepPred provides a user friendly web interface for the researchers to easily observe the fibril forming and non-fibril forming hexmers in a given protein sequence. We expect that this stratagem will be highly encouraging in discovering fibril forming regions in proteins thereby benefit in finding therapeutic agents that specifically aim these sequences for the inhibition and cure of amyloid illnesses.

Availability

AmylPepPred is available freely for academic use at www.zoommicro.in/amylpeppred  相似文献   

4.
Mittler T  Levy M  Chad F  Karen S 《Bioinformation》2010,5(5):224-226
Basic Local Alignment Search Tool, (BLAST) allows the comparison of a query sequence/s to a database of sequences and identifies those sequences that are similar to the query above a user-defined threshold. We have developed a user friendly web application, MULTBLAST that runs a series of BLAST searches on a user-supplied list of proteins against one or more target protein or nucleotide databases. The application pre-processes the data, launches each individual BLAST search on the University of Nevada, Reno''s-TimeLogic DeCypher® system (available from Active Motif, Inc.) and retrieves and combines all the results into a simple, easy to read output file. The output file presents the list of the query proteins, followed by the BLAST results for the matching sequences from each target database in consecutive columns. This format is especially useful for either comparing the results from the different target databases, or analyzing the results while keeping the identification of each target database separate.

Availability

The application is available at the URLhttp://blastpipe.biochem.unr.edu/  相似文献   

5.
Background to the debate: Several studies have found disparities in the outcome of medical procedures across different hospitals—better outcomes have been associated with higher procedure volume. An Institute of Medicine workshop found such a “volume–outcome relationship” for two types of cancer surgery: resection of the pancreas and esophagus (http://www.iom.edu/?id=31508). This debate examines whether physicians have an ethical obligation to inform patients of hospital outcome disparities for these cancers.  相似文献   

6.
7.
Recent studies have revealed that a small non-coding RNA, microRNA (miRNA) down-regulates its mRNA targets. This effect is regarded as an important role in various biological processes. Many studies have been devoted to predicting miRNA-target interactions. These studies indicate that the interactions may only be functional in some specific tissues, which depend on the characteristics of an miRNA. No systematic methods have been established in the literature to investigate the correlation between miRNA-target interactions and tissue specificity through microarray data. In this study, we propose a method to investigate miRNA-target interaction-supported tissues, which is based on experimentally validated miRNA-target interactions. The tissue specificity results by our method are in accordance with the experimental results in the literature.

Availability and Implementation

Our analysis results are available at http://tsmti.mbc.nctu.edu.tw/ and http://www.stat.nctu.edu.tw/hwang/tsmti.html.  相似文献   

8.
TP Lu  CY Lee  MH Tsai  YC Chiu  CK Hsiao  LC Lai  EY Chuang 《PloS one》2012,7(8):e42390

Background

Many prediction tools for microRNA (miRNA) targets have been developed, but inconsistent predictions were observed across multiple algorithms, which can make further analysis difficult. Moreover, the nomenclature of human miRNAs changes rapidly. To address these issues, we developed a web-based system, miRSystem, for converting queried miRNAs to the latest annotation and predicting the function of miRNA by integrating miRNA target gene prediction and function/pathway analyses.

Results

First, queried miRNA IDs were converted to the latest annotated version to prevent potential conflicts resulting from multiple aliases. Next, by combining seven algorithms and two validated databases, potential gene targets of miRNAs and their functions were predicted based on the consistency across independent algorithms and observed/expected ratios. Lastly, five pathway databases were included to characterize the enriched pathways of target genes through bootstrap approaches. Based on the enriched pathways of target genes, the functions of queried miRNAs could be predicted.

Conclusions

MiRSystem is a user-friendly tool for predicting the target genes and their associated pathways for many miRNAs simultaneously. The web server and the documentation are freely available at http://mirsystem.cgm.ntu.edu.tw/.  相似文献   

9.

Background

Heme-copper oxygen reductases (HCOs) are the last enzymatic complexes of most aerobic respiratory chains, reducing dioxygen to water and translocating up to four protons across the inner mitochondrial membrane (eukaryotes) or cytoplasmatic membrane (prokaryotes). The number of completely sequenced genomes is expanding exponentially, and concomitantly, the number and taxonomic distribution of HCO sequences. These enzymes were initially classified into three different types being this classification recently challenged.

Methodology

We reanalyzed the classification scheme and developed a new bioinformatics classifier for the HCO and Nitric oxide reductases (NOR), which we benchmark against a manually derived gold standard sequence set. It is able to classify any given sequence of subunit I from HCO and NOR with a global recall and precision both of 99.8%. We use this tool to classify this protein family in 552 completely sequenced genomes.

Conclusions

We concluded that the new and broader data set supports three functional and evolutionary groups of HCOs. Homology between NORs and HCOs is shown and NORs closest relationship with C Type HCOs demonstrated. We established and made available a classification web tool and an integrated Heme-Copper Oxygen reductase and NOR protein database (www.evocell.org/hco).  相似文献   

10.
Zhang L  Chen Y  Wong HS  Zhou S  Mamitsuka H  Zhu S 《PloS one》2012,7(2):e30483

Motivation

Accurate identification of peptides binding to specific Major Histocompatibility Complex Class II (MHC-II) molecules is of great importance for elucidating the underlying mechanism of immune recognition, as well as for developing effective epitope-based vaccines and promising immunotherapies for many severe diseases. Due to extreme polymorphism of MHC-II alleles and the high cost of biochemical experiments, the development of computational methods for accurate prediction of binding peptides of MHC-II molecules, particularly for the ones with few or no experimental data, has become a topic of increasing interest. TEPITOPE is a well-used computational approach because of its good interpretability and relatively high performance. However, TEPITOPE can be applied to only 51 out of over 700 known HLA DR molecules.

Method

We have developed a new method, called TEPITOPEpan, by extrapolating from the binding specificities of HLA DR molecules characterized by TEPITOPE to those uncharacterized. First, each HLA-DR binding pocket is represented by amino acid residues that have close contact with the corresponding peptide binding core residues. Then the pocket similarity between two HLA-DR molecules is calculated as the sequence similarity of the residues. Finally, for an uncharacterized HLA-DR molecule, the binding specificity of each pocket is computed as a weighted average in pocket binding specificities over HLA-DR molecules characterized by TEPITOPE.

Result

The performance of TEPITOPEpan has been extensively evaluated using various data sets from different viewpoints: predicting MHC binding peptides, identifying HLA ligands and T-cell epitopes and recognizing binding cores. Among the four state-of-the-art competing pan-specific methods, for predicting binding specificities of unknown HLA-DR molecules, TEPITOPEpan was roughly the second best method next to NETMHCIIpan-2.0. Additionally, TEPITOPEpan achieved the best performance in recognizing binding cores. We further analyzed the motifs detected by TEPITOPEpan, examining the corresponding literature of immunology. Its online server and PSSMs therein are available at http://www.biokdd.fudan.edu.cn/Service/TEPITOPEpan/.  相似文献   

11.
CP Li  ZG Yu  GS Han  KH Chu 《PloS one》2012,7(7):e42154

Background

The composition vector (CV) method has been proved to be a reliable and fast alignment-free method to analyze large COI barcoding data. In this study, we modify this method for analyzing multi-gene datasets for plant DNA barcoding. The modified method includes an adjustable-weighted algorithm for the vector distance according to the ratio in sequence length of the candidate genes for each pair of taxa.

Methodology/Principal Findings

Three datasets, matK+rbcL dataset with 2,083 sequences, matK+rbcL dataset with 397 sequences and matK+rbcL+trnH-psbA dataset with 397 sequences, were tested. We showed that the success rates of grouping sequences at the genus/species level based on this modified CV approach are always higher than those based on the traditional K2P/NJ method. For the matK+rbcL datasets, the modified CV approach outperformed the K2P-NJ approach by 7.9% in both the 2,083-sequence and 397-sequence datasets, and for the matK+rbcL+trnH-psbA dataset, the CV approach outperformed the traditional approach by 16.7%.

Conclusions

We conclude that the modified CV approach is an efficient method for analyzing large multi-gene datasets for plant DNA barcoding. Source code, implemented in C++ and supported on MS Windows, is freely available for download at http://math.xtu.edu.cn/myphp/math/research/source/Barcode_source_codes.zip.  相似文献   

12.
Bioterrorism is the intended use of pathogenic strains of microbes to widen terror in a population. There is a definite need to promote research for development of vaccines, therapeutics and diagnostic methods as a part of preparedness to any bioterror attack in the future. BIRS is an open-access database of collective information on the organisms related to bioterrorism. The architecture of database utilizes the current open-source technology viz PHP ver 5.3.19, MySQL and IIS server under windows platform for database designing. Database stores information on literature, generic- information and unique pathways of about 10 microorganisms involved in bioterrorism. This may serve as a collective repository to accelerate the drug discovery and vaccines designing process against such bioterrorist agents (microbes). The available data has been validated from various online resources and literature mining in order to provide the user with a comprehensive information system.

Availability

The database is freely available at http://www.bioterrorism.biowaves.org  相似文献   

13.
14.
The use of bioinformatics tools require different sequence formats at various instances. Every tool uses specific set of formats for processing. Sequence in one format is often required in another format. Thus, there is a need for sequence format conversion. A number of such tools are available in the public domain. Here, we describe BIOFFORC as a file format converter. The tool is developed with a graphical user interface in PERL.

Availability

http://www.winningpath.com/biofforc/  相似文献   

15.
Molecular approach to the identification of fish in the South China Sea   总被引:3,自引:0,他引:3  
Zhang J  Hanner R 《PloS one》2012,7(2):e30621

Background

DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL) campaign has the primary goal of gathering DNA barcode records for all the world''s fish species. As a contribution to FISH-BOL, we examined the degree to which DNA barcoding can discriminate marine fishes from the South China Sea.

Methodology/Principal Findings

DNA barcodes of cytochrome oxidase subunit I (COI) were characterized using 1336 specimens that belong to 242 species fishes from the South China Sea. All specimen provenance data (including digital specimen images and geospatial coordinates of collection localities) and collateral sequence information were assembled using Barcode of Life Data System (BOLD; www.barcodinglife.org). Small intraspecific and large interspecific differences create distinct genetic boundaries among most species. In addition, the efficiency of two mitochondrial genes, 16S rRNA (16S) and cytochrome b (cytb), and one nuclear ribosomal gene, 18S rRNA (18S), was also evaluated for a few select groups of species.

Conclusions/Significance

The present study provides evidence for the effectiveness of DNA barcoding as a tool for monitoring marine biodiversity. Open access data of fishes from the South China Sea can benefit relative applications in ecology and taxonomy.  相似文献   

16.
Jones M  Ghoorah A  Blaxter M 《PloS one》2011,6(4):e19259

Background

DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU) and for associating these MOTU with known organismal taxonomies.

Results

Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation.

Conclusions

jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/.  相似文献   

17.

Background

B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task.

Results

In this work, based on the antigen’s primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728.

Conclusions

We have presented a reliable method for the identification of linear B cell epitope using antigen’s primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0414-y) contains supplementary material, which is available to authorized users.  相似文献   

18.
The introduction of affordable, consumer-oriented 3-D printers is a milestone in the current “maker movement,” which has been heralded as the next industrial revolution. Combined with free and open sharing of detailed design blueprints and accessible development tools, rapid prototypes of complex products can now be assembled in one’s own garage—a game-changer reminiscent of the early days of personal computing. At the same time, 3-D printing has also allowed the scientific and engineering community to build the “little things” that help a lab get up and running much faster and easier than ever before.Applications of 3-D printing technologies (Fig. 1A, Box 1) have become as diverse as the types of materials that can be used for printing. Replacement parts at the International Space Station may be printed in orbit from durable plastics or metals, while back on Earth the food industry is starting to explore the same basic technology to fold strings of chocolate into custom-shaped confectionary. Also, consumer-oriented laser-cutting technology makes it very easy to cut raw materials such as sheets of plywood, acrylic, or aluminum into complex shapes within seconds. The range of possibilities comes to light when those mechanical parts are combined with off-the-shelf electronics, low-cost microcontrollers like Arduino boards [1], and single-board computers such as a Beagleboard [2] or a Raspberry Pi [3]. After an initial investment of typically less than a thousand dollars (e.g., to set-up a 3-D printer), the only other materials needed to build virtually anything include a few hundred grams of plastic (approximately US$30/kg), cables, and basic electronic components [4,5].Open in a separate windowFig 1Examples of open 3-D printed laboratory tools. A 1, Components for laboratory tools, such as the base for a micromanipulator [18] shown here, can be rapidly prototyped using 3-D printing. A 2, The printed parts can be easily combined with an off-the-shelf continuous rotation servo-motor (bottom) to motorize the main axis. B 1, A 3-D printable micropipette [8], designed in OpenSCAD [19], shown in full (left) and cross-section (right). B 2, The pipette consists of the printed parts (blue), two biro fillings with the spring, an off-the-shelf piece of tubing to fit the tip, and one screw used as a spacer. B 3, Assembly is complete with a laboratory glove or balloon spanned between the two main printed parts and sealed with tape to create an airtight bottom chamber continuous with the pipette tip. Accuracy is ±2–10 μl depending on printer precision, and total capacity of the system is easily adjusted using two variables listed in the source code, or accessed via the “Customizer” plugin on the thingiverse link [8]. See also the first table.

Box 1. Glossary

Open source

A collective license that defines terms of free availability and redistribution of published source material. Terms include free and unrestricted distribution, as well as full access to source code/blueprints/circuit board designs and derived works. For details, see http://opensource.org.

Maker movement

Technology-oriented extension of the traditional “Do-it-Yourself (DIY)” movement, typically denoting specific pursuits in electronics, CNC (computer numerical control) tools such as mills and laser cutters, as well as 3-D printing and related technologies.

3-D printing

Technology to generate three-dimensional objects from raw materials based on computer models. Most consumer-oriented 3-D printers print in plastic by locally melting a strand of raw material at the tip (“hot-end”) and “drawing” a 3-D object in layers. Plastic materials include Acrylnitrile butadiene styrene (ABS) and Polylactic acid (PLA). Many variations of 3-D printers exist, including those based on laser-polymerization or fusion of resins or powdered raw materials (e.g., metal or ceramic printers).

Arduino boards

Inexpensive and consumer-oriented microcontroller boards built around simple processors. These boards offer a variety of interfaces (serial ports, I2C and CAN bus, etc.), μs-timers, and multiple general-purpose input-output (GPIO) pins suitable for running simple, time-precise programs to control custom-built electronics.

Single board computers

Inexpensive single-board computers capable of running a mature operating system with graphical-user interface, such as Linux. Like microcontroller boards, they offer a variety of hardware interfaces and GPIO pins to control custom-built electronics.It therefore comes as no surprise that these technologies are also routinely used by research scientists and, especially, educators aiming to customize existing lab equipment or even build sophisticated lab equipment from scratch for a mere fraction of what commercial alternatives cost [6]. Designs for such “Open Labware” include simple mechanical adaptors [7], micropipettes (Fig. 1B) [8], and an egg-whisk–based centrifuge [9] as well as more sophisticated equipment such as an extracellular amplifier for neurophysiological experiments [10], a thermocycler for PCR [11], or a two-photon microscope [12]. At the same time, conceptually related approaches are also being pursued in chemistry [1315] and material sciences [16,17]. See also
AreaProjectSource
MicroscopySmartphone Microscope http://www.instructables.com/id/10-Smartphone-to-digital-microscope-conversion
iPad Microscope http://www.thingiverse.com/thing:31632
Raspberry Pi Microscope http://www.thingiverse.com/thing:385308
Foldscope http://www.foldscope.com/
Molecular BiologyThermocycler (PCR) http://openpcr.org/
Water bath http://blog.labfab.cc/?p=47
Centrifuge http://www.thingiverse.com/thing:151406
Dremelfuge http://www.thingiverse.com/thing:1483
Colorometer http://www.thingiverse.com/thing:73910
Micropipette http://www.thingiverse.com/thing:255519
Gel Comb http://www.thingiverse.com/thing:352873
Hot Plate http://www.instructables.com/id/Programmable-Temperature-Controller-Hot-Plate/
Magnetic Stirrer http://www.instructables.com/id/How-to-Build-a-Magnetic-Stirrer/
ElectrophysiologyWaveform Generator http://www.instructables.com/id/Arduino-Waveform-Generator/
Open EEG https://www.olimex.com/Products/EEG/OpenEEG/
Mobile ECG http://mobilecg.hu/
Extracellular amplifier https://backyardbrains.com/products/spikerBox
Micromanipulator http://www.thingiverse.com/thing:239105
Open Ephys http://open-ephys.org/
OtherSyringe pump http://www.thingiverse.com/thing:210756
Translational Stage http://www.thingiverse.com/thing:144838
Vacuum pump http://www.instructables.com/id/The-simplest-vacuum-pump-in-the-world/
Skinner Box http://www.kscottz.com/open-skinner-box-pycon-2014/
Open in a separate windowSee also S1 Data.  相似文献   

19.
StreptomycesInforSys: A web-enabled information repository     
Chakresh Kumar Jain  Vidhi Gupta  Ashvarya Gupta  Sanjay Gupta  Gulshan Wadhwa  Sanjeev Kumar Sharma  Indira P Sarethy 《Bioinformation》2012,8(25):1283-1285
  相似文献   

20.
GIV: A Tool for Genomic Islands Visualization     
Dongsheng Che  Han Wang 《Bioinformation》2013,9(17):879-882
A Genomic Islands (GI) is a chunk of DNA sequence in a genome whose origin can be traced back to other organisms or viruses. The detection of GIs plays an indispensable role in biomedical research, due to the fact that GIs are highly related to special functionalities such as disease-causing GIs - pathogenicity islands. It is also very important to visualize genomic islands, as well as the supporting features corresponding to the genomic islands in the genome. We have developed a program, Genomic Island Visualization (GIV), which displays the locations of genomic islands in a genome, as well as the corresponding supportive feature information for GIs. GIV was implemented in C++, and was compiled and executed on Linux/Unix operating systems.

Availability

GIV is freely available for non-commercial use at http://www5.esu.edu/cpsc/bioinfo/software/GIV  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号