首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
F4 enterotoxigenic Escherichia coli (F4 ETEC) are an important cause of diarrhea in neonatal and newly-weaned pigs. Based on the predicted differential O-glycosylation patterns of the 2 MUC13 variants (MUC13A and MUC13B) in F4ac ETEC susceptible and F4ac ETEC resistant pigs, the MUC13 gene was recently proposed as the causal gene for F4ac ETEC susceptibility. Because the absence of MUC13 on Western blot from brush border membrane vesicles of F4ab/acR+ pigs and the absence of F4ac attachment to immunoprecipitated MUC13 could not support this hypothesis, a new GWAS study was performed using 52 non-adhesive and 68 strong adhesive pigs for F4ab/ac ETEC originating from 5 Belgian farms. A refined candidate region (chr13: 144,810,100–144,993,222) for F4ab/ac ETEC susceptibility was identified with MUC13 adjacent to the distal part of the region. This candidate region lacks annotated genes and contains a sequence gap based on the sequence of the porcine GenomeBuild 10.2. We hypothesize that a porcine orphan gene or trans-acting element present in the identified candidate region has an effect on the glycosylation of F4 binding proteins and therefore determines the F4ab/ac ETEC susceptibility in pigs.  相似文献   

2.

Background

Integrin beta-5 (ITGB5) and mucin 13 (MUC13) genes are highly expressed on the apical surface of intestinal epithelia and are thought to be candidate genes for controlling the expression of the receptor for enterotoxigenic Escherichia coli (ETEC) F4ac. Human MUC13 protein has an expected role in protecting intestinal mucosal surfaces and porcine ITGB5 is a newly identified potential receptor for ETEC F4ac.

Methodology/Principal Findings

To test the hypothesis that ITGB5 and MUC13 both play key roles in protection of the intestinal mucosa against pathogenic bacterium, porcine intestinal epithelial cells (IPEC-J2) were transfected with ITGB5-targeting, MUC13-targeting or negative control small interfering RNA (siRNA), respectively. Firstly, we measured mRNA expression levels of mucin genes (MUC4, MUC20), pro-inflammatory genes (IL8, IL1A, IL6, CXCL2), anti-inflammatory mediator SLPI, and PLAU after RNAi treatments with and without ETEC infection. Secondly, we compared the adhesions of ETEC to the pre- and post-knockdown IPEC-J2 cells of ITGB5 and MUC13, respectively. We found that ITGB5 and MUC13 knockdown both had small but significant effects in attenuating the inflammation induced by ETEC infection, and both increased bacterial adhesion in response to F4ac ETEC exposure.

Conclusions/Significance

Our current study first reported that ITGB5 and MUC13 are important adhesion molecules of mucosal epithelial signaling in response to Escherichia coli in pigs. These data suggest that both ITGB5 and MUC13 play key roles in defending the attachment and adhesion of ETEC to porcine jejunal cells and in maintaining epithelial barrier and immunity function.  相似文献   

3.
Diarrhoea in newborn and weaned pigs caused by enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbriae leads to considerable losses in pig production. In this study, we refined the mapping of the receptor locus for ETEC F4ab/F4ac adhesion ( F4bcR ) by joint analysis of Nordic and Swiss data. A total of 236 pigs from a Nordic experimental herd, 331 pigs from a Swiss experimental herd and 143 pigs from the Swiss performing station were used for linkage analysis. Genotyping data of six known microsatellite markers, two newly developed markers ( MUC4gt and HSA125gt ) and an intronic SNP in MUC4 ( MUC4-8227 ) were used to create the linkage map. The region for F4bcR was refined to the interval SW207 – S0075 on pig chromosome 13. The most probable position of F4bcR was in the SW207 – MUC4 region. The order of six markers was supported by physical mapping on the BAC fingerprint contig from the Wellcome Trust Sanger Institute. Thus, the region for F4bcR could be reduced from 26 to 14 Mb.  相似文献   

4.
Plants offer a promising alternative for the production of foreign proteins for pharmaceutical purposes in tissues that are consumed as food and/or feed. Our long-term strategy is to develop edible vaccines against piglet diarrhoea caused by enterotoxigenic Escherichia coli (F4 ETEC) in feed plants. In this work, we isolated a gene, faeG, encoding for a major F4ac fimbrial subunit protein. Our goal was to test whether the FaeG protein, when isolated from its fimbrial background and produced in a plant cell, would retain the key properties of an oral vaccine, that is, stability in gastrointestinal conditions, binding to intestinal receptors and inhibition of the F4 ETEC attachment. For this purpose, tobacco was first transformed with a faeG construct that included a transit peptide encoding sequence to target the FaeG protein to the chloroplast. The best transgenic lines produced FaeG protein in amounts of 1% total soluble protein. The stability of the plant-produced FaeG was tested in fluids simulating piglet gastric (SGF) and intestinal (SIF) conditions. Plant-produced FaeG proved to be stable up to 2 h under these conditions. The binding and inhibition properties were tested with isolated piglet villi. These results showed that the plant-produced FaeG could bind to the receptors on the villi and subsequently inhibit F4 ETEC binding in a dose-dependent manner. Thus, the first two prerequisites for the development of an oral vaccine have been met.  相似文献   

5.
The aim of this study was to refine the localization of the receptor locus for fimbriae F4ac. Small intestinal enterocyte preparations from 187 pigs were phenotyped by an in vitro adhesion test using two strains of Escherichia coli representing the variants F4ab and F4ac. The three-generation pedigree comprised eight founders, 18 F1 and 174 F2 animals, for a total of 200 pigs available for the linkage analysis. Results of the adhesion tests on 171 F2 pigs slaughtered at 8 weeks of age show that 23.5% of the pigs were adhesive for F4ab and non-adhesive for F4ac (phenotype F4abR+/F4acR-; R means receptor). Pigs of this phenotype were characterized by a weak adhesion receptor for F4ab. No pigs were found expressing only F4acR and lacking F4abR. Receptors for F4ab and F4ac (F4abR+/F4acR+) were expressed by 54.5% of the pigs. Animals of this phenotype strongly bound both F4ab and F4ac E. coli. In the segregation study, the serum transferrin (TF) gene and 10 microsatellites on chromosome 13 were linked with F4acR (recombination fractions (theta) between 0.00 and 0.11 and lod score values (Z) between 11.4 and 40.4). The 11-point analysis indicates the F4acR locus was located in the interval S0068-Sw1030 close to S0075 and Sw225, with recombination fractions (theta) of 0.05 between F4acR and S0068, 0.04 with Sw1030, and 0.00 with S0075 and Sw225. The lack of pigs displaying the F4abR-/F4acR+ phenotype and the presence of two phenotypes for F4abR (a strong receptor present in phenotype F4abR+/F4acR+ and a weak receptor in phenotype F4abR+/F4acR-) led us to conclude that the receptor for F4ac binds F4ab bacteria as well, and that it is controlled by one gene localized between S0068 and Sw1030 on chromosome 13.  相似文献   

6.
Niu X  Li Y  Ding X  Zhang Q 《Animal genetics》2011,42(5):552-555
Enterotoxigenic Escherichia coli expressing F4 fimbriae is the major cause of diarrhoea in neonatal and post-weaning piglets. Previous studies have revealed that the loci controlling the F4ab/F4ac receptors are located on SSC13q41, between markers SW207 and S0283. In this study, we refined their positions in a two generation population containing 366 piglets of three breeds (Large White, Landrace, and Songliao Black). Nine microsatellite markers within this region were selected from the MARC (U.S. Meat Animal Research Center) porcine linkage map, and the pedigree disequilibrium test was employed for fine-mapping. The F4abR gene was located in the interval between S0283 and SW1833, a 4.8-cM region, and the F4acR gene was located in the interval between S0283 and SW1876, a 1.6-cM region. Our results also suggest that the F4ab/F4ac receptors might be controlled by two different but closely linked loci. The results of microsatellite-based haplotype analysis in the corresponding region show that some specific haplotypes were overwhelmingly present in the adhesive or non-adhesive animals, indicating that there are mutations within the identified regions that are strongly associated with the F4ab/ac phenotypes.  相似文献   

7.
8.
Zhang B  Ren J  Yan X  Huang X  Ji H  Peng Q  Zhang Z  Huang L 《Animal genetics》2008,39(3):258-266
Enterotoxigenic Escherichia coli (ETEC) F4ab and F4ac are major determinants of piglet diarrhoea. The locus for the ETEC F4ab/ac receptor has been mapped to SSC13q41. MUC13 is a transmembrane mucin expressed predominantly in the epithelial surface of the gastrointestinal tract and the MUC13 gene was assigned to SSC13q41, supporting it as a positional candidate gene for the ETEC F4ab/ac receptor. We herein determined the complete 2679-bp cDNA of pig MUC13, and proved that it was most highly expressed in the jejunum and moderately expressed in the trachea, stomach and liver. Furthermore, 13 MUC13 polymorphisms were identified in 19 founder animals of a White Duroc x Erhualian resource population, and a total of 727 F(2) animals with in vitro ETEC F4ab/ac adhesion phenotypes in this population were genotyped for three identified MUC13 polymorphisms including c.576C>T, c.908A>G and c.935A>C. The transmission disequilibrium test showed that the MUC13 alleles and haplotypes were significantly associated with susceptibility/resistance to ETEC F4ab/ac, especially between haplotype [C;G;A] and susceptibility to ETEC F4ac (P = 8.0e-18). Animals inheriting this haplotype were predominantly susceptible to ETEC F4ac (n = 291/303). Moreover, nearly all animals homozygous for haplotype [T;G;C] (n = 39/41) and a majority of those with the [C;A;A]/[T;G;C] haplotype pair (n = 79/88) were resistant to ETEC F4ab. Our results indicated that MUC13 is in strong linkage disequilibrium with the ETEC F4ab/ac receptor locus and provided potential markers for selection of ETEC F4ab/ac-resistant animals in the pig breeding scheme.  相似文献   

9.
目的:在体外克隆和表达猪肠产毒性大肠杆菌(ETEC)K88ae菌毛操纵子,触结构基因,并检测重组菌毛的相关生物学活性。方法:利用长PCR技术以猪ETECK88ae株C83902基因组DNA为模板扩增编码K88菌毛操纵子触基因,克隆入表达质粒载体pBR322,构建和筛选重组质粒pBR322-fae,转化至不含任何菌毛的大肠杆菌EP株;电镜观察重组菌表面菌毛表达情况;用热抽提法提纯表达的重组菌毛;用纯化菌毛免疫小鼠制备高效价抗血清;用SDS-PAGE和Western blot检测重组菌毛的抗原性,用细胞黏附和黏附抑制试验检测其生物学活性。结果和结论:在电镜下观察到重组菌表面大量表达K88ae菌毛,该重组菌与兔抗K88ae菌毛单因子阳性血清、鼠抗K88ac菌毛单克隆抗体均产生凝集反应;纯化菌毛经SDS-PAGE,结构单位菌毛呈单一的相对分子质量约26×10^3的蛋白条带;纯化菌毛免疫小鼠后可制备出高效价的鼠抗血清,玻板凝集试验和Western blot结果表明体外表达的K88ae菌毛具有与K88ae野生菌毛相同的抗原性;猪小肠上皮细胞系黏附和黏附抑制实验结果表明重组EP菌和野生菌株一样具有较强的黏附猪小肠上皮细胞系的能力,而且提纯重组菌毛制备出的鼠抗血清能有效抑制上述重组菌或野生菌株对猪小肠上皮细胞系的黏附结合。  相似文献   

10.
Infection of the small intestine by enterotoxigenic Escherichia coli F4ab/ac is a major welfare problem and financial burden for the pig industry. Natural resistance to this infection is inherited as a Mendelian recessive trait, and a polymorphism in the MUC4 gene segregating for susceptibility/resistance is presently used in a selection programme by the Danish pig breeding industry. To elucidate the genetic background involved in E. coli F4ab/ac susceptibility in pigs, a detailed haplotype map of the porcine candidate region was established. This region covers approximately 3.7 Mb. The material used for the study is a three generation family, where the founders are two Wild boars and eight Large White sows. All pigs have been phenotyped for susceptibility to F4ab/ac using an adhesion assay. Their haplotypes are known from segregation analysis using flanking markers. By a targeted approach, the candidate region was subjected to screening for polymorphisms, mainly focusing on intronic sequences. A total of 18 genes were partially sequenced, and polymorphisms were identified in GP5, CENTB2, APOD, PCYT1A, OSTalpha, ZDHHC19, TFRC, ACK1, MUC4, MUC20, KIAA0226, LRCH3 and MUC13 . Overall, 227 polymorphisms were discovered in the founder generation. The analysis revealed a large haplotype block, spanning at least 1.5 Mb around MUC4 , to be associated with F4ab/ac susceptibility.  相似文献   

11.
The F4ac receptor locus (F4acR), which encodes susceptibility or resistance to Escherichia coli diarrhoea, is inherited as an autosomal recessive monogenetic trait. F4acR is localized on pig chromosome 13 (SSC13q41–q44) near the MUC13 gene. Two flanking markers (CHCF1 and ALGA0106330) with a high linkage disequilibrium (LD) with F4acR were found to be effective for the genetic identification of F4ac‐resistant pigs in the Swiss Large White breed (one recombinant out of 2034 genotyped pigs). Three recombinant boars, one each from the Duroc, Swiss Landrace and Piétrain breeds, were genotyped with seven different markers and phenotyped by means of a microscopic adhesion test. Only ALGA0072075, CHCF1 and CHCF3 indicated the correct phenotype. To test the effect of the resistance allele on production traits, 530 Large White pigs from the national test station were investigated. A significant difference existed among the F4acR locus genotypes in the intramuscular fat content of the longissimus dorsi muscle, whereas no other production traits were influenced by the resistance allele. The frequency of the CHCF1‐C and ALGA0106330‐A alleles associated with resistance in the Swiss Large White population was 60%, which is advantageous for implementing this trait in a breeding programme to select for E. coli F4ac‐resistant animals. The selection of resistant pigs should start on the male side due to the inability of resistant sows to produce sufficient amounts of protecting antibodies in the colostrum. Selection of genetically F4ac‐resistant pigs is a sustainable and suitable alternative to decreasing animal loss and antibiotic use due to diarrhoea.  相似文献   

12.
Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.  相似文献   

13.
This study determined the effect of feed fermentation with Lactobacillus reuteri on growth performance and the abundance of enterotoxigenic Escherichia coli (ETEC) in weanling piglets. L. reuteri strains produce reuteran or levan, exopolysaccharides that inhibit ETEC adhesion to the mucosa, and feed fermentation was conducted under conditions supporting exopolysaccharide formation and under conditions not supporting exopolysaccharide formation. Diets were chosen to assess the impact of organic acids and the impact of viable L. reuteri bacteria. Fecal samples were taken throughout 3 weeks of feeding; at the end of the 21-day feeding period, animals were euthanized to sample the gut digesta. The feed intake was reduced in pigs fed diets containing exopolysaccharides; however, feed efficiencies did not differ among the diets. Quantification of L. reuteri by quantitative PCR (qPCR) detected the two strains used for feed fermentation throughout the intestinal tract. Quantification of E. coli and ETEC virulence factors by qPCR demonstrated that fermented diets containing reuteran significantly (P < 0.05) reduced the copy numbers of genes for E. coli and the heat-stable enterotoxin in feces compared to those achieved with the control diet. Any fermented feed significantly (P < 0.05) reduced the abundance of E. coli and the heat-stable enterotoxin in colonic digesta at 21 days; reuteran-containing diets reduced the copy numbers of the genes for E. coli and the heat-stable enterotoxin below the detection limit in samples from the ileum, the cecum, and the colon. In conclusion, feed fermentation with L. reuteri reduced the level of colonization of weaning piglets with ETEC, and feed fermentation supplied concentrations of reuteran that may specifically contribute to the effect on ETEC.  相似文献   

14.
Fu WX  Liu Y  Lu X  Niu XY  Ding XD  Liu JF  Zhang Q 《PloS one》2012,7(3):e32127
Enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbria is the major pathogenic bacteria causing diarrhoea in neonatal and post-weaning piglets. Previous studies have revealed that the susceptibility to ETEC F4ab/F4ac is an autosomal Mendelian dominant trait and the loci controlling the F4ab/F4ac receptor are located on SSC13q41, between markers SW207 and S0283. To pinpoint these loci and further validate previous findings, we performed a genome-wide association study (GWAS) using a two generation family-based population, consisting of 301 piglets with phenotypes of susceptibility to ETEC F4ab/F4ac by the vitro adhesion test. The DNA of all piglets and their parents was genotyped using the Illumina PorcineSNP60 BeadChip, and 50,972 and 50,483 SNPs were available for F4ab and F4ac susceptibility, respectively, in the association analysis after quality control. In summary, 28 and 18 significant SNPs (p<0.05) were detected associated with F4ab and F4ac susceptibility respectively at genome-wide significance level. From these significant findings, two novel candidate genes, HEG1 and ITGB5, were firstly identified as the most promising genes underlying F4ab/F4ac susceptibility in swine according to their functions and positions. Our findings herein provide a novel evidence for unravelling genetic mechanism of diarrhoea risk in piglets.  相似文献   

15.
CS3纤毛抗原表达调控机理的研究   总被引:2,自引:0,他引:2  
CS3是某些肠毒素大肠杆菌菌体表面上的多聚物,它能使病原菌粘附于宿主的小肠上皮细胞上,是致病的重要因素.为了探索CS3菌毛抗原基因的表达调控机制,根据CS3亚基结构基因的核苷酸序列分析表明,在其翻译起始位点的上游存在着rbs位点及原核启动子的-10区和-35区DNA序列.采用基因重组技术将CS3结构基因上游120bp的DNA片段亚克隆进缺乏启动子而只含报告基因lacZ的质粒pCB267中.凝胶滞留和启动报告基因表达的实验证明了CS3亚基结构基因具有自身的启动子(Ps).将该启动子上游区域不同长度的核苷酸片段克隆进pCB267中,报告基因表达结果表明CS3结构基因的表达受其上游区域的抑制.核苷酸序列分析发现,在Ps-35区上游550bp和840bp处各存在一个富A-T簇.结合原核启动子的一般作用规律推知,CS3的表达可能受DNA结合蛋白型的正向调节因子的作用.用CFA/1菌毛抗原基因的正向调节基因cfaD对CS3基因进行的互补表达试验表明cfaD基因不仅可消除上游区对Ps的抑制,而且可大幅度地提高Ps的启动能力.在分析表达调控的基础上获得CS3重组高效表达.同时提出了其表达调控模型.  相似文献   

16.
Neonatal diarrhea caused by enterotoxigenic Escherichia coli(ETEC)F4 is a common and serious disease,resulting in significant economical loss in the pig industry.The locus encoding ETEC F4 receptor has been mapped to pig chromosome(SSC)13q41,and one of the most significantly linked markers is S0075.In this study,we selected three genes including SLC12A8,MYLK and KPNA1 from a chromosomal region flanking S0075 on SSC13 to develop pig specific sequence tagged sites(STS). Seven single nucleotide polymorphisms were identified in the three pig STS using DNA of four full-sib susceptible and resistant animals in a White Duroc×Erhualian intercross.All grandparents,parents and 755 offspring in the intercross were genotyped for three polymorphisms,including SLC12A8 g.159A>G,MYLK g.1673A>G and KPNA1 g.306A>G.Family-based transmission disequilibrium test(TDT) revealed that all polymorphisms and the corresponding haplotypes are significantly associated with ETEC F4ab/ac(especially F4ac)brush border adhesion phenotypes,indicating that these polymor- phism are in linkage disequlibrium with causal mutation(s)of the gene encoding ETEC F4ab/ac receptor. Our results strengthen the evidence for the involvement of SSC13q41 in high acquiring risk of ETEC F4ab/ac infection,and provide novel polymorphic markers for fine mapping of the ETEC F4ab/ac receptor locus.  相似文献   

17.
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in piglets; ETEC cells colonize the intestinal mucosa with adhesins and deliver toxins that cause fluid loss. This study determined the antiadhesive properties of bacterial exopolysaccharides (reuteran and levan) and related glycans (dextran and inulin) in a small intestinal segment perfusion (SISP) model. The SISP model used 10 jejunal segments from 5-week-old piglets. Five segments were infected with ETEC expressing K88 fimbriae (ETEC K88), while five segments were treated with saline. Every two segments (ETEC and non-ETEC infected) were infused with 65 ml of 10 g liter−1 of glycans or saline (control) for 8 h. High-resolution melting-curve (HRM) quantitative PCR (qPCR) indicated that E. coli is the dominant bacterium in infected segments, while other bacteria were predominant in noninfected segments. Infection by ETEC K88 was also verified by qPCR; gene copy numbers of K88 fimbriae and the heat-labile toxin (LT) in mucosal scrapings and outflow fluid of infected segments were significantly higher than those in noninfected segments. Genes coding for K88 fimbriae and LT were also detected in noninfected segments. LT amplicons from infected and noninfected segments were 99% identical over 481 bp, demonstrating the presence of autochthonous ETEC K88. All glycans reduced fluid loss caused by ETEC K88 infection. Reuteran tended (P = 0.06) to decrease ETEC K88 levels in mucosal scraping sample, as judged by qPCR. Fluorescent in situ hybridization analysis demonstrated that reuteran significantly (P = 0.012) decreased levels of adherent ETEC K88. Overall, reuteran may prevent piglet diarrhea by reducing adhesion of ETEC K88.  相似文献   

18.
The objective of this study was to establish a loop-mediated isothermal amplification (LAMP) method for the detection of F5 fimbriae gene in Enterotoxigenic Escherichia coli. A set of four primers were designed based on the conservative sequence of coding F5 fimbriae. Temperature and time condition, specificity test, and sensitivity test were performed with the DNA of Escherichia coli (F5+). The results showed that the optimal reaction condition for LAMP was achieved at 61 °C for 45 min in a water bath. Ladder-like products were produced with those F5-positive samples by LAMP, while no product was generated with other negative samples. The assay of LAMP had a detection limit equivalent to 72 cfu/tube, which was more sensitive than PCR (7.2 × 102 cfu/tube). The agreement rate between LAMP and PCR was 100 % in detecting simulation samples. Thus, the LAMP assay may be a new method for rapid detection of F5 fimbriae gene of ETEC.  相似文献   

19.
The synthesis of the murein precursor lipid I is performed by MraY. We have shown that mraY is an essential gene for cell growth. Cells depleted of MraY first swell and then lyse. The expression of mraY DNA in vitro produces a 40-kDa polypeptide detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

20.
The aim of this study was to investigate whether supplementation with chitosan (COS) could reduce diarrhea and to explore how COS alleviates intestinal inflammation in weaned pigs. Thirty pigs (Duroc×Landrace×Yorkshire, initial BW of 5.65±0.27) weaned at age 21 d were challenged with enterotoxigenic Escherichia coli during a preliminary trial period, and then divided into three treatment groups. Pigs in individual pens were fed a corn-soybean meal diet, that contained either 0 (control), 50 mg/kg chlortetracycline, or 300 mg/kg COS for 21 days. The post-weaning diarrhea frequency, calprotectin levels and TLR4 protein expression were decreased (P<0.05) in both the COS and chlortetracycline groups compared with control. Simultaneously, supplemental COS and chlortetracycline had no effect on the mRNA expression of TNF-α in the jejunal mucosa, or on the concentrations of IL-1β, IL-6 and TNF-α in serum. However, COS supplementation improved (P<0.05) the mRNA expression of IL-1β and IL-6 in the jejunal mucosa. The results indicate that supplementation with COS at 300 mg/kg was effective for alleviating intestinal inflammation and enhancing the cell-mediated immune response. As feed additives, chitosan and chlortetracycline may influence different mechanisms for alleviating inflammation in piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号