首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Regulatory T (Treg) cells play a crucial role in preventing autoimmune diseases and are an ideal target for the development of therapies designed to suppress inflammation in an antigen-specific manner. Type 1 regulatory T (Tr1) cells are defined by their capacity to produce high levels of interleukin 10 (IL-10), which contributes to their ability to suppress pathological immune responses in several settings. The aim of this study was to evaluate the therapeutic potential of collagen type II–specific Tr1 (Col-Treg) cells in two models of rheumatoid arthritis (RA) in mice.

Methods

Col-Treg clones were isolated and expanded from collagen-specific TCR transgenic mice. Their cytokine secretion profile and phenotype characterization were studied. The therapeutic potential of Col-Treg cells was evaluated after adoptive transfer in collagen-antibody– and collagen-induced arthritis models. The in vivo suppressive mechanism of Col-Treg clones on effector T-cell proliferation was also investigated.

Results

Col-Treg clones are characterized by their specific cytokine profile (IL-10highIL-4negIFN-γint) and mediate contact-independent immune suppression. They also share with natural Tregs high expression of GITR, CD39 and granzyme B. A single infusion of Col-Treg cells reduced the incidence and clinical symptoms of arthritis in both preventive and curative settings, with a significant impact on collagen type II antibodies. Importantly, injection of antigen-specific Tr1 cells decreased the proliferation of antigen-specific effector T cells in vivo significantly.

Conclusions

Our results demonstrate the therapeutic potential of Col-Treg cells in two models of RA, providing evidence that Col-Treg could be an efficient cell-based therapy for RA patients whose disease is refractory to current treatments.  相似文献   

2.
Although the pathogenesis of collagen-induced arthritis (CIA), a model of rheumatoid arthritis, is mediated by both collagen-specific CD4(+) T cells and Ab specific for type II collagen (CII), the role of CII-specific T cells in the pathogenesis of CIA remains unclear. Using tetrameric HLA-DR1 with a covalently bound immunodominant CII peptide, CII(259-273), we studied the development of the CII-specific T cell response in the periphery and arthritic joints of DR1 transgenic mice. Although the maximum number of DR1-CII-tetramer(+) cells was detected in draining lymph nodes 10 days postimmunization, these T cells accounted for only 1% or less of the CD4(+) population. After day 10, their numbers gradually decreased, but were still detectable on day 130. Examination of TCR expression and changes in CD62L, CD44(high), and CD69 expression by these T cells indicated that they expressed a limited TCR-BV repertoire and had clearly undergone activation. RT-PCR analysis of cytokine expression by the tetramer(+) T cells compared with tetramer(-) cells indicated the tetramer(+) cells expressed high levels of Th1 and proinflammatory cytokines, including IL-2, IFN-gamma, IL-6, TNF-alpha, and especially IL-17. Additionally, analysis of the synovium from arthritic paws indicated that the same CD4(+)/BV8(+)/BV14(+)/tetramer(+) T cells were present in the arthritic joints. These data demonstrate that although only small numbers of CII-specific T cells are generated during the development of CIA, these cells express very high levels of cytokine mRNA and appear to preferentially migrate to the arthritic joint, indicating a potential direct role of CII-specific T cells in the pathogenesis of CIA.  相似文献   

3.
Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing β cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2rγnull mice. The selective destruction of pancreatic islet β cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total β-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the β cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet β cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4+ T cell infiltration and clonal expansion, and the mouse islet β-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet β cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.  相似文献   

4.
Attenuation of an adjuvant arthritis by type II collagen   总被引:6,自引:0,他引:6  
Subcutaneous injection of the nonimmunogenic synthetic alkyldiamine, N,N-diotadecyl-N',N'-bis(2-hydroxyethyl) propanediamine (CP-20961), which possesses potent adjuvant properties for cellular sensitization, can induce an inflammatory arthritis in rats. To study whether a host reaction to native type II collagen plays a role in the pathogenesis of the arthritis in this model, CP-20961-injected Lewis rats received i.v. on four occasions native type II collagen coupled to syngeneic spleen cells with ethylcarbodiimide (CDI), native type II collagen added to spleen cells without CDI, or native type II collagen coupled to rat red blood cells (RBC) with glutaraldehyde. There was a significant suppression of the severity of arthritis in all three groups compared with a control group injected with CP-20961 but not receiving cells. In addition, the prevalence of arthritis was decreased in the group receiving native type II collagen-coupled RBC. Injection of cells coupled to denatured type II collagen, native type I collagen, and ovalbumin did not affect significantly the morphologic aspects of this disease. These data provide evidence that material possessing the quaternary epitope(s) of type II collagen functions in an as yet unidentified effector pathway in this adjuvant arthritis.  相似文献   

5.
T cell recognition of the type II collagen (CII) 260-270 peptide is a bottleneck for the development of collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. We have earlier made C3H.Q mice expressing CII with glutamic acid instead of aspartic acid at position 266 (the MMC-C3H.Q mouse), similar to the rat and human CII epitope, which increases binding to MHC class II and leads to effective presentation of the peptide in vivo. These mice show T cell tolerance to CII, but also develop severe arthritis. The present investigation shows that non-MHC genes play a decisive role in determining tolerance and arthritis susceptibility. We bred MMC into B10.Q mice, which display similar susceptibility to CIA induced with rat CII as the C3H.Q mice. In contrast to MMC-C3H.Q mice, MMC-B10.Q mice were completely resistant to arthritis. Nontransgenic (B10.Q x C3H.Q)F(1) mice were more susceptible to CIA than either of the parental strains, but introduction of the MMC transgene leads to CIA resistance, showing that the protection is dominantly inherited from B10.Q. In an attempt to break the B10-mediated CIA protection in MMC-transgenic mice, we introduced a transgenic, CII-specific, TCR beta-chain specific for the CII(260-270) glycopeptide, in the highly CIA-susceptible (B10.Q x DBA/1)F(1) mice. The magnification of the autoreactive CII-specific T cell repertoire led to increased CIA susceptibility, but the disease was less severe than in mice lacking the MMC transgene. This finding is important for understanding CIA and perhaps also rheumatoid arthritis, as in both diseases MHC class II-restricted T cell recognition of the glycosylated CII peptide occurs.  相似文献   

6.
7.
Eight male DBA/1J mice immunized twice by intradermal injection of type II collagen were autopsied 12 weeks after the first immunization and analyzed for anti-type II collagen antibody level, and the limb joints were examined radiologically and histopathologically. Clinical onset of swelling and erythema in the limb joints occurred about 5 weeks after the first immunization and deformity of the limbs was observed in a few animals about 5 weeks later. Although there were marked individual differences, serum anti-type II collagen antibody levels were elevated in all animals. Histopathologically, the changes were similar to those seen in human rheumatoid arthritis and were characterized by proliferation of synovial lining cells, formation of granulation tissue with destruction of cartilage and subchondral bone, and ankylosis. Systematic examination of various joints of the fore- and hind-limbs revealed definitely that the sequence of arthritic lesions was not uniform. The knee joint was involved most frequently, but smaller joints such as the phalangeal joints were involved less frequently but exhibited severe changes. The significance of histopathological examinations in the evaluation of effects of anti-rheumatic drugs was discussed with reference to this model.  相似文献   

8.
A synthetic peptide representing sequences of type II collagen, (CII 245-270), has previously been used to induce tolerance and suppress arthritis in DBA/1 mice. To determine important residues, a series of peptides, each containing one or two site-directed substitutions, was generated. Mononuclear cells from DBA/1 mice immunized with CII were cultured in the presence of each peptide and the T cell response determined by measuring IFN-gamma in culture supernatant fluids. Substitutions within the region CII 260-270 led to significant decreases in IFN-gamma responses, identifying this sequence as a T cell epitope. To determine the effects of substitutions within this epitope on arthritis, substituted peptides were administered to neonatal mice as tolerogens. Five site-directed substitutions, four of which included the insertion of a residue found in type I collagen to replace its type II counterpart, abrogated the ability of the peptides to induce tolerance and suppress arthritis. These substitutions were located at residues 260, 261, 263, 264, and 266. Two patterns of T cell reactivity were observed. Peptides containing individual substitutions at positions 261, 264, or 266 were capable of generating a significant T lymphokine response, although those containing substitutions at residues 260 or 263 were ineffective Ag. Systematic analysis of the fine structures of T cell determinants important for autoimmune arthritis can lead to strategies for therapeutic intervention.  相似文献   

9.
Induction of oral tolerance has long been considered a promising approach to the treatment of chronic autoimmune diseases, including rheumatoid arthritis (RA). Oral administration of type II collagen (CII) has been proven to improve signs and symptoms in RA patients without troublesome toxicity. To investigate the mechanism of immune suppression mediated by orally administered antigen, we examined changes in serum IgG subtypes and T-cell proliferative responses to CII, and generation of IL-10-producing CD4+CD25+ T-cell subsets in an animal model of collagen-induced arthritis (CIA). We found that joint inflammation in CIA mice peaked at 5 weeks after primary immunization with CII, which was significantly less in mice tolerized by repeated oral feeding of CII before CIA induction. Mice that had been fed with CII also exhibited increased serum IgG1 and decreased serum IgG2a as compared with nontolerized CIA animals. The T-cell proliferative response to CII was suppressed in lymph nodes of tolerized mice also. Production of IL-10 and of transforming growth factor-beta from mononuclear lymphocytes was increased in the tolerized animals, and CD4+ T cells isolated from tolerized mice did not respond with induction of IFN-gamma when stimulated in vitro with CII. We also observed greater induction of IL-10-producing CD4+CD25+ subsets among CII-stimulated splenic T cells from tolerized mice. These data suggest that when these IL-10-producing CD4+CD25+ T cells encounter CII antigen in affected joints they become activated to exert an anti-inflammatory effect.  相似文献   

10.
We reported that rabbit anti-idiotypic antibody (Ab2) against mAb, termed 1-5 (Ab1) and reactive with human type II collagen (CII) induced antibody response to CII in DBA/1J mice susceptible to collagen-induced arthritis. In the present study, we further characterized the anti-CII antibody response elicited by Ab2 with respect to epitope specificity, putative genetic background, and IgG subclass. Most of anti-CII antibodies (polyclonal Ab3) derived from Ab2-immunized mice were of the IgG1 subclass. We purified polyclonal Ab3, using a CII-coupled immunoadsorbent column and we developed monoclonal Ab3 from Ab2-immunized mice. Both purified polyclonal Ab3 and two monoclonal Ab3s specifically reacted with a selected epitope on CII, recognized by Ab1. The anti-CII antibody response stimulated by Ab2 was observed in DBA/1J (H-2q, Igh-1c) and DBA/2 (H-2q, Igh-1c) mice, but not in the BALB/c (H-2d, Igh-1a) and C57BL/6 (H-2b, Igh-1b) strains, thereby suggesting that the anti-CII antibody response elicited by Ab2 is controlled by the Igh gene.  相似文献   

11.
Type 2 antigens are usually unable to prime for IgG memory responses or to activate helper T cells (TH) necessary for memory B cell generation. Previous studies from this laboratory have established that low doses (0.0025 microgram) of polyvinylpyrrolidone (PVP) or a T-dependent form of PVP, PVP-coupled horse red blood cells (PVP-HRBC) can activate PVP-specific TH. The present study was undertaken in order to determine some of the characteristics of the TH activated by PVP and to compare their properties with those of classical TH1 and of TH2 cells described in many T-dependent systems. TH activated with either 0.0025 microgram of PVP or PVP-HRBC were characterized with respect to cell surface antigens, Igh restriction and generation in mice expressing an X-linked immune defect (xid mice). PVP-specific TH are similar to TH1 cells in that they are required for the production of IgG subclasses absent in primary responses and have the Lyt-1+, L3T4+, I-J-surface phenotype. These TH may not be identical with TH1 cells, however, since they are I-A+ and Igh restricted. PVP-specific TH can be generated in xid mice which do not produce antibody in a primary anti-PVP response and do not develop a memory response to PVP, regardless of whether it is presented as a type 2 or T-dependent antigen.  相似文献   

12.
Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA.  相似文献   

13.
The immunodominant T-cell epitope that is involved in collagen-induced arthritis (CIA) is the glycosylated type II collagen (CII) peptide 256-270. In CII transgenic mice, which express the immunodominant CII 256-270 epitope in cartilage, the CII-specific T cells are characterized by a partially tolerant state with low proliferative activity in vitro, but with maintained effector functions, such as IFN-γ secretion and ability to provide B cell help. These mice were still susceptible to CIA. The response was mainly directed to the glycosylated form of the CII 256-270 peptide, rather than to the nonglycosylated peptide. Tolerance induction was rapid; transferred T cells encountered CII within a few days. CII immunization several weeks after thymectomy of the mice did not change their susceptibility to arthritis or the induction of partial T-cell tolerance, excluding a role for recent thymic emigrants. Thus, partially tolerant CII autoreactive T cells are maintained and are crucial for the development of CIA.  相似文献   

14.
Cinnamides as novel CCR1 antagonist chemotypes are described with high affinity to human and rodent receptors. A1B1 and A4B7 showed oral activity in the mouse collagen induced arthritis.  相似文献   

15.
Mounting evidence from animal models has demonstrated that alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. We have developed an altered peptide ligand of type II collagen, referred to as A9, which differentially regulates TCR signaling in murine T cells leading to suppression of arthritis in the experimental model of collagen-induced arthritis. This study delineates the T cell signaling pathway used by T cells stimulated by the A9·I-A(q) complex. We have found that T cells activated by A9 bypass the requirement for Zap-70 and CD3-ζ and signal via FcRγ and Syk. Using collagen-specific T cell hybridomas engineered to overexpress either Syk, Zap-70, TCR-FcRγ, or CD3-ζ, we demonstrate that A9·I-A(q) preferentially activates FcRγ/Syk but not CD3-ζ/Zap-70. Moreover, a genetic absence of Syk or FcRγ significantly reduces the altered peptide ligand induction of the nuclear factor GATA3. By dissecting the molecular mechanism of A9-induced T cell signaling we have defined a new alternate pathway that is dependent upon FcRγ and Syk to secrete immunoregulatory cytokines. Given the interest in using Syk inhibitors to treat patients with rheumatoid arthritis, understanding this pathway may be critical for the proper application of this therapy.  相似文献   

16.
Optimally immunogenic amounts of type III pneumococcal polysaccharide (S3) activate a population of contrasuppressor T cells (Tcs), which have been shown to play an important role in the induction of anti-S3 antibody responses. These Tcs belong to a unique T cell subset that has the surface phenotype Lyt 1+2- L3T4- I-J+ I-A+. These Tcs are also cyclophosphamide (Cy)-sensitive and sensitive to antilymphocyte serum (ALS) and mitomycin C. Tcs have antigen-binding receptors, indicating that any interactions of Tcs with B cells or T suppressor cells (Ts) (both of which also have antigen-binding receptors) must be via an antigen bridge rather than an idiotype-anti-idiotype interaction. Tcs are also Igh restricted in their action. Contrasuppression is manifest only when the Tcs are Igh compatible with both the Ts and the responding B cells. Tcs apparently mediate their effects by releasing a soluble factor, since a soluble factor extracted from Tcs is able to abrogate the effects of S3-specific Ts.  相似文献   

17.
To identify pathogenic epitopes on human thyroglobulin (hTg), a homodimer of 660kDa, we have applied a computer-based algorithm to predict potential HLA-DR3-binding peptides and have tested them in DR3-transgenic mice. Of the 39 peptides selected, four stimulated a proliferative response from hTg-primed cells of DR3+ mice, but not DQ8+ mice. Of the four peptides, one, hTg2079, was consistently pathogenic. Thyroiditis was not only produced by adoptive transfer of hTg-primed, hTg2079-activated cells but also by direct immunization with the peptide. These results demonstrate the utility of using this computer-based algorithm with synthetic peptides to help identify pathogenic T cell epitopes on hTg.  相似文献   

18.
To study the phenotypic and functional changes in naive type II collagen (CII)-specific autoimmune T cells following a tolerogenic signal, a TCR-transgenic (Tg) mouse model of collagen-induced arthritis was developed. These Tg mice express an I-A(q)-restricted CII (260-267)-specific TCR that confers severe accelerated autoimmune arthritis following immunization with CII. Despite the fact that >90% of the alphabeta T cells express the Tg, these mice can be rendered completely tolerant to the induction of arthritis by i.v. administration of 200 microg of CII. As early as 24 h after CII administration, CII-specific T cells demonstrated a decreased ability to proliferate in response to the CII immunodominant peptide and phenotypically altered the expression of L-selectin to CD62L(low) and of phagocytic glycoprotein-1 to CD44(high), expression levels consistent with the phenotype of memory T cells. In addition, they up-regulated the expression of the activation markers CD71 and CD69. Functionally, following tolerogenic stimulation, the CII-specific T cells produced similar levels of IL-2 in comparison to controls when challenged with CII peptide, however, by 48 h after exposure to tolerogen, IL-2 production dropped and was replaced by high levels of IL-10 and IL-4. Based on their production of Th2 cytokines, these data suggest that T regulatory cells expressing activation and memory markers are induced by the tolerogen and may exert their influence via cytokines to protect the animals from the induction of arthritis.  相似文献   

19.
Invariant NKT (iNKT) cells have been implicated in the regulation of autoimmune diseases. In several models of type 1 diabetes, increasing the number of iNKT cells prevents the development of disease. Because CD8 T cells play a crucial role in the pathogenesis of diabetes, we have investigated the influence of iNKT cells on diabetogenic CD8 T cells. In the present study, type 1 diabetes was induced by the transfer of CD8 T cells specific for the influenza virus hemagglutinin into recipient mice expressing the hemagglutinin Ag specifically in their beta pancreatic cells. In contrast to previous reports, high frequency of iNKT cells promoted severe insulitis and exacerbated diabetes. Analysis of diabetogenic CD8 T cells showed that iNKT cells enhance their activation, their expansion, and their differentiation into effector cells producing IFN-gamma. This first analysis of the influence of iNKT cells on diabetogenic CD8 T cells reveals that iNKT cells not only fail to regulate but in fact exacerbate the development of diabetes. Thus, iNKT cells can induce opposing effects dependent on the model of type 1 diabetes that is being studied. This prodiabetogenic capacity of iNKT cells should be taken into consideration when developing therapeutic approaches based on iNKT cell manipulation.  相似文献   

20.
T-cell lines were established from the lymph node cells of syngeneic Louvain (LOU) rats previously immunized with native chick type II collagen (CII) emulsified in incomplete Freund's adjuvant. The CII lines proliferated in vitro to type II collagen but not to type I collagen, ovalbumin (OV), or PPD. Control lines, developed from LOU rats immunized with OV emulsified in complete Freund's adjuvant, were OV specific because they did not respond to other antigens in vitro. CII line cells could adoptively transfer delayed-type hypersensitivity (DTH) but did not induce IgG antibody production to collagen. Moreover, the intravenous administration of 2 X 10(7) CII line cells prevented the subsequent induction of collagen arthritis following immunization and suppressed DTH to collagen without affecting antibody responses in the recipients. Spleen cells, but not sera, from these resistant rats decreased CII line reactivity in vitro. OV or irradiated CII lines had no effect on clinical or immunologic parameters in this model. These findings demonstrate protection from arthritis afforded by T-cell line transfer and suggest that the phenomenon results from down-regulation of the recipients' cellular immunity to collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号