首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proprotein convertase subtilisin/kexin 9 (PCSK9) regulates plasma LDL cholesterol levels by regulating the degradation of LDL receptors. Another proprotein convertase, furin, cleaves PCSK9 at Arg218-Gln219 in the surface-exposed “218 loop.” This cleaved form circulates in blood along with the intact form, albeit at lower concentrations. To gain a better understanding of how cleavage affects PCSK9 function, we produced recombinant furin-cleaved PCSK9 using antibody Ab-3D5, which binds the intact but not the cleaved 218 loop. Using Ab-3D5, we also produced highly purified hepsin-cleaved PCSK9. Hepsin cleaves PCSK9 at Arg218-Gln219 more efficiently than furin but also cleaves at Arg215-Phe216. Further analysis by size exclusion chromatography and mass spectrometry indicated that furin and hepsin produced an internal cleavage in the 218 loop without the loss of the N-terminal segment (Ser153–Arg218), which remained attached to the catalytic domain. Both furin- and hepsin-cleaved PCSK9 bound to LDL receptor with only 2-fold reduced affinity compared with intact PCSK9. Moreover, they reduced LDL receptor levels in HepG2 cells and in mouse liver with only moderately lower activity than intact PCSK9, consistent with the binding data. Single injection into mice of furin-cleaved PCSK9 resulted in significantly increased serum cholesterol levels, approaching the increase by intact PCSK9. These findings indicate that circulating furin-cleaved PCSK9 is able to regulate LDL receptor and serum cholesterol levels, although somewhat less efficiently than intact PCSK9. Therapeutic anti-PCSK9 approaches that neutralize both forms should be the most effective in preserving LDL receptors and in lowering plasma LDL cholesterol.  相似文献   

2.
PCSK9 is the ninth member of the proprotein convertase (PC) family. Some of its natural mutations have been genetically associated with the development of a dominant form of familial hyper- or hypocholesterolemia. The exact mechanism of action of PCSK9 is not clear, although it is known to enhance the intracellular degradation of the low density lipoprotein (LDL) receptor in acidic compartments, likely the endosomes/lysosomes. We analyzed the post-translational modifications of PCSK9 and show that it is sulfated within its prosegment at Tyr38. We also examined the susceptibility of PCSK9 to proteolytic cleavage by the other members of the PC family. The data show that the natural gain-of-function mutations R218S, F216L, and D374Y associated with hypercholesterolemia result in total or partial loss of furin/PC5/6A processing at the motif RFHR218 downward arrow. In contrast, the loss-of-function mutations A443T and C679X lead either to the lack of trans-Golgi network/recycling endosome localization and an enhanced susceptibility to furin cleavage (A443T) or to the inability of PCSK9 to exit the endoplasmic reticulum (C679X). Furthermore, we report the presence of both native and furin-like cleaved forms of PCSK9 in circulating human plasma. Thus, we propose that PCSK9 levels are finely regulated by the basic amino acid convertases furin and PC5/6A. The latter may reduce the lifetime of this proteinase and its ability to degrade the cell-surface LDL receptor, thereby regulating the levels of circulating LDL cholesterol.  相似文献   

3.
Proprotein convertase subtilisin-kexin type 9 (PCSK9) is a secreted protein which regulates serum LDL cholesterol. It circulates in human and rodent serum in an intact form and a major truncated form. Previous in vitro studies involving the expression of human PCSK9 genetic variants and in vivo studies of furin knockout mice suggest that the truncated form is a furin cleavage product. However, the circulating truncated form of PCSK9 has not been isolated and characterized. Utilizing antibodies which bind to either the catalytic domain or the C-terminal domain of PCSK9, the truncated PCSK9 was isolated from serum. MS was used to determine that this form of PCSK9 is a product of in vivo cleavage at Arg218 resulting in pyroglutamic acid formation of the nascent N terminus corresponding to Gln219 of intact PCSK9. We also determined that the truncated PCSK9 in serum lacked the N-terminal segment which contains amino acids critical for LDL receptor binding. A truncated PCSK9, expressed and purified from HEK293 cells with identical composition as the circulating truncated protein, was not active in inhibition of LDL uptake by HepG2 cells. These studies provide a definitive characterization of the composition and activity of the truncated form of PCSK9 found in human serum.  相似文献   

4.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   

5.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with familial autosomal dominant hypercholesterolemia and is a natural inhibitor of the LDL receptor (LDLr). PCSK9 is degraded by other proprotein convertases: PC5/6A and furin. Both PCSK9 and the LDLr are up-regulated by the hypocholesterolemic statins. Thus, inhibitors or repressors of PCSK9 should amplify their beneficial effects. In the present study, we showed that PPARalpha activation counteracts PCSK9 induction by statins by repressing PCSK9 promoter activity and by increasing PC5/6A and furin expression. Quantification of mRNA and protein levels showed that various fibrates decreased PCSK9 and increased PC5/6A and furin expression. Fenofibric acid (FA) reduced PCSK9 protein content in immortalized human hepatocytes (IHH) as well as its cellular secretion. FA suppressed PCSK9 induction by statins or by the liver X receptor agonist TO901317. PCSK9 repression is occurring at the promoter level. We showed that PC5/6A and furin fibrate-mediated up-regulation is PPARalpha-dependent. As a functional test, we observed that FA increased by 30% the effect of pravastatin on the LDLr activity in vitro. In conclusion, fibrates simultaneously decreased PCSK9 expression while increasing PC5/6A and furin expression, indicating a broad action of PPARalpha activation in proprotein convertase-mediated lipid homeostasis. Moreover, this study validates the functional relevance of a combined therapy associating PCSK9 repressors and statins.  相似文献   

6.
Lilly PCSK9 antibody LY3015014 (LY) is a monoclonal antibody (mAb) that neutralizes proprotein convertase subtilisin-kexin type 9 (PCSK9). LY decreases LDL cholesterol in monkeys and, unlike other PCSK9 mAbs, does not cause an accumulation of intact PCSK9 in serum. Comparing the epitope of LY with other clinically tested PCSK9 mAbs, it was noted that the LY epitope excludes the furin cleavage site in PCSK9, whereas other mAbs span this site. In vitro exposure of PCSK9 to furin resulted in degradation of PCSK9 bound to LY, whereas cleavage was blocked by other mAbs. These other mAbs caused a significant accumulation of serum PCSK9 and displayed a shorter duration of LDL-cholesterol lowering than LY when administered to mice expressing the WT human PCSK9. In mice expressing a noncleavable variant of human PCSK9, LY behaved like a cleavage-blocking mAb, in that it caused significant PCSK9 accumulation, its duration of LDL lowering was reduced, and its clearance (CL) from serum was accelerated. Thus, LY neutralizes PCSK9 and allows its proteolytic degradation to proceed, which limits PCSK9 accumulation, reduces the CL rate of LY, and extends its duration of action. PCSK9 mAbs with this property are likely to achieve longer durability and require lower doses than mAbs that cause antigen to accumulate.  相似文献   

7.
8.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that regulates low density lipoprotein receptor (LDLR) protein levels. The mechanisms of this action, however, remain to be defined. We show here that recombinant human PCSK9 expressed in HEK293 cells was readily secreted into the medium, with the prosegment associated with the C-terminal domain. Secreted PCSK9 mediated cell surface LDLR degradation in a concentration- and time-dependent manner when added to HEK293 cells. Accordingly, cellular LDL uptake was significantly reduced as well. When infused directly into C57B6 mice, purified human PCSK9 substantially reduced hepatic LDLR protein levels and resulted in increased plasma LDL cholesterol. When added to culture medium, fluorescently labeled PCSK9 was endocytosed and displayed endosomal-lysosomal intracellular localization in HepG2 cells, as was demonstrated by colocalization with DiI-LDL. PCSK9 endocytosis was mediated by LDLR as LDLR deficiency (hepatocytes from LDLR null mice), or RNA interference-mediated knockdown of LDLR markedly reduced PCSK9 endocytosis. In addition, RNA interference knockdown of the autosomal recessive hypercholesterolemia (ARH) gene product also significantly reduced PCSK9 endocytosis. Biochemical analysis revealed that the LDLR extracellular domain interacted directly with secreted PCSK9; thus, overexpression of the LDLR extracellular domain was able to attenuate the reduction of cell surface LDLR levels by secreted PCSK9. Together, these results reveal that secreted PCSK9 retains biological activity, is able to bind directly to the LDLR extracellular domain, and undergoes LDLR-ARH-mediated endocytosis, leading to accelerated intracellular degradation of the LDLR.  相似文献   

9.
The secretory proprotein convertase (PC) family comprises nine members: PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9. The first seven PCs cleave their substrates at single or paired basic residues, and SKI-1/S1P cleaves its substrates at non-basic residues in the Golgi. PCSK9 cleaves itself once, and the secreted inactive protease escorts specific receptors for lysosomal degradation. It regulates the levels of circulating LDL cholesterol and is considered a major therapeutic target in phase III clinical trials. In vivo, PCs exhibit unique and often essential functions during development and/or in adulthood, but certain convertases also exhibit complementary, redundant, or opposite functions.  相似文献   

10.
The activation and physiological functions of the proprotein convertases   总被引:5,自引:0,他引:5  
The mammalian secretory proprotein convertases are part of a family of nine serine proteinases of the subtilisin-type. Seven of them cleave after basic amino acids and are called PC1/3, PC2, furin, PC4, PC5/6, PACE4 and PC7. The two other convertases SKI-1/S1P and PCSK9 are implicated in cholesterol and/or fatty acid metabolism. The convertases PC5/6 and PACE4 are activated at the cell surface where they are tethered to heparan sulfate proteoglycans. This activation pathway is unique and differs from that of furin and PC7, which are activated in the trans-Golgi network and from PC1/3 and PC2 that are activated in dense core secretory granules. While some of the basic amino acid-specific convertases may display redundant cleavages of substrates, they uniquely process certain substrates in vivo. Indeed, the conditional knockout of the PC5/6 gene in the embryo proper in mice led to severe malformations, bone morphogenic defects and death at birth. This is likely due to the absence of processing of the growth differentiating factor 11 (Gdf11). Both complete and liver-specific knockout of Pcsk9 revealed that it is a major convertase that regulates the level of circulating low-density lipoproteins (LDL) via the degradation of the hepatic LDL-receptor. This apparently non-enzymatic mechanism implicates the enhanced degradation of the LDLR in endosomes/lysosomes. These data provide evidence that an inhibitor of PCSK9-LDLR interaction is a viable target for the development of a novel cholesterol lowering drug in conjunction with the classical statins.  相似文献   

11.
Unravelling the functional significance of PCSK9   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Proprotein convertase subtilisin kexin type 9 (PCSK9) has emerged as a potential target for lowering plasma LDL cholesterol levels. This review summarizes recent studies published in print or online before January 2007 which have investigated the functional significance of this intriguing protease. RECENT FINDINGS: Increasing interest in PCSK9 has given rise to landmark epidemiological studies, the generation of animal models, the discovery of new human mutations, as well as numerous in-vitro studies. These studies have helped to unravel the molecular functions of PCSK9. SUMMARY: Mutations of PCSK9 are associated either with hypercholesterolemia or with hypocholesterolemia. In the latter case, the incidence of coronary heart disease is reduced, thereby demonstrating that low LDL cholesterol levels from birth are highly beneficial. PCSK9 promotes the degradation of the LDL receptor in hepatocytes apparently both intracellularly and by being a secreted protein that can bind the LDL receptor and be internalized. By virtue of its role as a major inhibitor of the LDL receptor, PCSK9 is a promising therapeutic target. Specific PCSK9 pharmacological inhibitors may prove to be useful in amplifying the well documented benefits of statins.  相似文献   

12.
Annexin A2 (AnxA2) was reported to be an extracellular endogenous inhibitor of proprotein convertase subtilisin kexin type 9 (PCSK9) activity on cell-surface LDL receptor degradation. In this study, we investigated the effect of silencing the expression of AnxA2 and PCSK9 in HepG2 and Huh7 cells to better define the role of AnxA2 in PCSK9 regulation. AnxA2 knockdown in Huh7 cells significantly increased PCSK9 protein levels as opposed to AnxA2 knockdown in HepG2 cells. However, HepG2 cells overexpressing AnxA2 had lower levels of PCSK9 protein. Overall, our data revealed a plausible new role of AnxA2 in the reduction of PCSK9 protein levels via a translational mechanism. Moreover, the C-terminal Cys/His-rich domain of PCSK9 is crucial in the regulation of PCSK9 activity, and we demonstrated by far-Western blot assay that the M1 and M2 domains are necessary for the specific interaction of PCSK9''s C-terminal Cys/His-rich domain and AnxA2. Finally, we produced and purified recombinant PCSK9 from humans and mice, which was characterized and used to perform 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate LDL cell-based assays on the stable knockdown HepG2 and Huh7 cells. We also demonstrated for the first time the equipotency of human and mouse PCSK9 R218S on human cells.  相似文献   

13.
Plasma PCSK9 preferentially reduces liver LDL receptors in mice   总被引:2,自引:0,他引:2  
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that regulates the expression of LDL receptor (LDLR) protein. Gain-of-function mutations in PCSK9 cause hypercholesterolemia, and loss-of-function mutations result in lower plasma LDL-cholesterol. Here, we investigate the kinetics and metabolism of circulating PCSK9 relative to tissue levels of LDLRs. The administration of recombinant human PCSK9 (32 microg) to mice by a single injection reduced hepatic LDLRs by approximately 90% within 60 min, and the receptor levels returned to normal within 6 h. The half-life of the PCSK9 was estimated to be approximately 5 min. Continuous infusion of PCSK9 (32 microg/h) into wild-type mice caused a approximately 90% reduction in hepatic LDLRs within 2 h and no associated change in the level of LDLR in the adrenals. Parallel studies were performed using a catalytically inactive form of PCSK9, PCSK9(S386A), and similar results were obtained. Infusion of PCSK9(D374Y), a gain-of-function mutation, resulted in accelerated clearance of the mutant PCSK9 and a greater reduction in hepatic LDLRs. Combined, these data suggest that exogenously administrated PCSK9 in plasma preferentially reduces LDLR protein levels in liver at concentrations found in human plasma and that PCSK9's action on the LDLR is not dependent on catalytic activity in vivo.  相似文献   

14.
Proprotein convertase subtilisin-like kexin type 9 (PCSK9) is a newly discovered serine protease that destroys low density lipoprotein (LDL) receptors in liver and thereby controls the level of LDL in plasma. Mutations that increase PCSK9 activity cause hypercholesterolemia and coronary heart disease (CHD); mutations that inactivate PCSK9 have the opposite effect, lowering LDL levels and reducing CHD. Although the mechanism of PCSK9 action is not yet clear, the protease provides a new therapeutic target to lower plasma levels of LDL and prevent CHD.  相似文献   

15.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising therapeutic target for treating coronary heart disease. We report a novel antibody 1B20 that binds to PCSK9 with sub-nanomolar affinity and antagonizes PCSK9 function in-vitro. In CETP/LDLR-hemi mice two successive doses of 1B20, administered 14 days apart at 3 or 10 mpk, induced dose dependent reductions in LDL-cholesterol (≥ 25% for 7-14 days) that correlated well with the extent of PCSK9 occupancy by the antibody. In addition, 1B20 induces increases in total plasma antibody-bound PCSK9 levels and decreases in liver mRNA levels of SREBP-regulated genes PCSK9 and LDLR, with a time course that parallels decreases in plasma LDL-cholesterol (LDL-C). Consistent with this observation in mice, in statin-responsive human primary hepatocytes, 1B20 lowers PCSK9 and LDLR mRNA levels and raises serum steady-state levels of antibody-bound PCSK9. In addition, mRNA levels of several SREBP regulated genes involved in cholesterol and fatty-acid synthesis including ACSS2, FDPS, IDI1, MVD, HMGCR, and CYP51A1 were decreased significantly with antibody treatment of primary human hepatocytes. In rhesus monkeys, subcutaneous (SC) dosing of 1B20 dose-dependently induces robust LDL-C lowering (maximal ~70%), which is correlated with increases in target engagement and total antibody-bound PCSK9 levels. Importantly, a combination of 1B20 and Simvastatin in dyslipidemic rhesus monkeys reduced LDL-C more than either agent alone, consistent with a mechanism of action that predicts additive effects of anti-PCSK9 agents with statins. Our results suggest that antibodies targeting PCSK9 could provide patients powerful LDL lowering efficacy on top of statins, and lower cardiovascular risk.  相似文献   

16.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS. Analysis of SARS-CoV spike glycoprotein (S) using recombinant plasmid and virus infections demonstrated that the S-precursor (proS) exists as a approximately 190 kDa endoplasmic reticulum form and a approximately 210 kDa Golgi-modified form. ProS is subsequently processed into two C-terminal proteins of approximately 110 and approximately 80 kDa. The membrane-bound proprotein convertases (PCs) furin, PC7 or PC5B enhanced the production of the approximately 80 kDa protein. In agreement, proS processing, cytopathic effects, and viral titers were enhanced in recombinant Vero E6 cells overexpressing furin, PC7 or PC5B. The convertase inhibitor dec-RVKR-cmk significantly reduced proS cleavage and viral titers of SARS-CoV infected cells. In addition, inhibition of processing by dec-RVKR-cmk completely abrogated the virus-induced cellular cytopathicity. A fluorogenically quenched synthetic peptide encompassing Arg(761) of the spike glycoprotein was efficiently cleaved by furin and the cleavage was inhibited by EDTA and dec-RVKR-cmk. Taken together, our data indicate that furin or PC-mediated processing plays a critical role in SARS-CoV spread and cytopathicity, and inhibitors of the PCs represent potential therapeutic anti-SARS-CoV agents.  相似文献   

17.
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibits the clearance of low-density lipoprotein (LDL) cholesterol (LDL-C) from plasma by directly binding with the LDL receptor (LDLR) and sending the receptor for lysosomal degradation. As the interaction promotes elevated plasma LDL-C levels, and therefore a predisposition to cardiovascular disease, PCSK9 has attracted intense interest as a therapeutic target. Despite this interest, an orally bioavailable small-molecule inhibitor of PCSK9 with extensive lipid-lowering activity is yet to enter the clinic. We report herein the discovery of NYX-PCSK9i, an orally bioavailable small-molecule inhibitor of PCSK9 with significant cholesterol-lowering activity in hyperlipidemic APOE13-Leiden.CETP mice. NYX-PCSK9i emerged from a medicinal chemistry campaign demonstrating potent disruption of the PCSK9-LDLR interaction in vitro and functional protection of the LDLR of human lymphocytes from PCSK9-directed degradation ex vivo. APOE13-Leiden.CETP mice orally treated with NYX-PCSK9i demonstrated a dose-dependent decrease in plasma total cholesterol of up to 57%, while its combination with atorvastatin additively suppressed plasma total cholesterol levels. Importantly, the majority of cholesterol lowering by NYX-PCSK9i was in non-HDL fractions. A concomitant increase in total plasma PCSK9 levels and significant increase in hepatic LDLR protein expression strongly indicated on-target function by NYX-PCSK9i. Determinations of hepatic lipid and fecal cholesterol content demonstrated depletion of liver cholesteryl esters and promotion of fecal cholesterol elimination with NYX-PCSK9i treatment. All measured in vivo biomarkers of health indicate that NYX-PCSK9i has a good safety profile. NYX-PCSK9i is a potential new therapy for hypercholesterolemia with the capacity to further enhance the lipid-lowering activities of statins.  相似文献   

18.
PCSK9: an enigmatic protease   总被引:1,自引:0,他引:1  
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in cholesterol metabolism by controlling the levels of low density lipoprotein (LDL) particles that circulate in the bloodstream. Several gain-of-function and loss-of-function mutations in the PCSK9 gene, that occur naturally, have been identified and linked to hypercholesterolemia and hypocholesterolemia, respectively. PCSK9 expression has been shown to be regulated by sterol regulatory element binding proteins (SREBPs) and statins similar to other genes involved in cholesterol homeostasis. The most critical finding concerning PCSK9 is that this protease is able to influence the number of LDL receptor molecules expressed on the cell surface. Studies have demonstrated that PCSK9 acts mainly by enhancing degradation of LDL receptor protein in the liver. Inactivation of PCSK9 in mice reduces plasma cholesterol levels primarily by increasing hepatic expression of LDL receptor protein and thereby accelerating clearance of circulating LDL cholesterol. The objective of this review is to summarize the current information related to the regulation and function of PCSK9 and to identify gaps in our present knowledge.  相似文献   

19.
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%-50% for over 2 weeks, despite its relatively short terminal half-life (t(1/2) = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr.  相似文献   

20.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) interferes with the recycling of low-density lipoprotein (LDL) receptor (LDLR). This leads to LDLR degradation and reduced cellular uptake of plasma LDL. Naturally occurring human PCSK9 loss-of-function mutations are associated with low levels of plasma LDL cholesterol and a reduced risk of coronary heart disease. PCSK9 gain-of-function mutations result in lower LDL clearance and increased risk of atherosclerosis. The exact mechanism by which PCSK9 disrupts the normal recycling of LDLR remains to be determined. In this study, we have assembled homologs of human PCSK9 from 20 vertebrates, a cephalochordate and mollusks in order to search for conserved regions of PCSK9 that may be important for the PCSK9-mediated degradation of LDLR. We found a large, conserved protrusion on the surface of the PCSK9 catalytic domain and have performed site-directed mutagenesis experiments for 13 residues on this protrusion. A cluster of residues that is important for the degradation of LDLR by PCSK9 was identified. Another cluster of residues, at the opposite end of the conserved protrusion, appears to be involved in the physical interaction with a putative inhibitor of PCSK9. This study identifies the residues, sequence segments and surface patches of PCSK9 that are under strong purifying selection and provides important information for future studies of PCSK9 mutants and for investigations on the function of this regulator of cholesterol homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号