首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During apoptosis the Golgi apparatus undergoes irreversible fragmentation. In part, this results from caspase-mediated cleavage of several high molecular weight coiled-coil proteins, termed golgins. These include GM130, golgin 160, and the Golgi vesicle tethering protein p115, whose caspase cleavage generates a C-terminal fragment (CTF) of 205 residues. Here we demonstrate that early during apoptosis, following the rapid cleavage of p115, endogenous CTF translocated to the cell nucleus and its nuclear import was required to enhance the apoptotic response. Expression of a series of deletion constructs identified a putative α-helical region of 26 amino acids, whose expression alone was sufficient to induce apoptosis; deletion of these 26 residues from the CTF diminished its proapoptotic activity. This region contains several potential SUMOylation sites and co-expression of SUMO together with the SUMO ligase, UBC9, resulted in SUMOylation of the p115 CTF. Significantly, when cells were treated with drugs that induce apoptosis, SUMOylation enhanced the efficiency of p115 cleavage and the kinetics of apoptosis. A construct in which a nuclear export signal was fused to the N terminus of p115 CTF accumulated in the cytoplasm and surprisingly, its expression did not induce apoptosis. In contrast, treatment of cells expressing this chimera with the antibiotic leptomycin induced its translocation into the nucleus and resulted in the concomitant induction of apoptosis. These results demonstrate that nuclear import of the p115 CTF is required for it to stimulate the apoptotic response and suggest that its mode of action is confined to the nucleus.In mammalian cells the Golgi apparatus is a highly polarized organelle comprising a series of stacked cisternae, which form a lace-like network in the perinuclear region of the cell. It receives de novo synthesized secretory and membrane proteins, as well as lipids from the endoplasmic reticulum (ER)2; these cargo molecules are then modified, sorted, and transported to lysosomes, endosomes, secretory granules, and the plasma membrane. Although it is well established that the Golgi apparatus undergoes reversible disassembly during mitosis (1, 2), indeed this appears to be a prerequisite for mitosis (3), studies from several laboratories including our own, have also established a link between the Golgi apparatus and apoptosis (programmed cell death). During apoptosis, the Golgi apparatus undergoes extensive and irreversible fragmentation (4), the ER vesiculates (5) and secretion is inhibited (6).Golgi disassembly during apoptosis results, in part, from caspase-mediated cleavage of several golgins (7). Proteolysis of golgin 160 by caspase-2, as well as GRASP65, GM130, p115, syntaxin5, and giantin by caspases-3 and -7 contributes significantly to Golgi fragmentation (6, 813). Consistent with this idea, overexpression of caspase-resistant forms of golgin 160, GRASP65, or p115 has been shown to delay the kinetics of Golgi fragmentation during apoptosis (810). In addition, immunoreactive caspase-2, an upstream caspase, localizes to the Golgi apparatus (9) and caspase-2-mediated cleavage of golgin 160 also appears to be an early event during apoptosis. Depending on the apoptotic stimulus, expression of a golgin 160 triple mutant resistant to caspase cleavage delays the onset of apoptosis (12). Recently, our laboratory demonstrated that Golgi fragmentation is an early apoptotic event that occurs close to or soon after release of cytochrome c from mitochondria, an early indicator of apoptosis (13). Together these observations demonstrate that specific Golgi proteins may function early during apoptosis, although their role in this process and the detailed molecular mechanism by which Golgi fragmentation occurs is not well understood.A key molecule in mediating Golgi fragmentation during apoptosis is the vesicle tethering protein p115 (10), a 962-residue peripheral membrane protein. p115 is an elongated homodimer consisting of two globular “head” domains, an extended “tail” region reminiscent of the myosin-II structure (14), and 4 sequential coil-coil domains distal to the globular head region, the first of which, CC1, has been implicated in soluble NSF attachment protein receptors (SNARE) binding (15). Earlier in vitro studies on mitotic Golgi reassembly demonstrated that p115 interacts with GM130 and giantin and implicated it in Golgi cisternal stacking (16). Consistent with this idea, microinjection of anti-p115 antibodies caused Golgi fragmentation (17). Based on data demonstrating p115 binding to GM130, giantin, GOS28, and syntaxin-5, Shorter et al. (15) suggested that p115 promotes formation of a GOS28-syntaxin-5 (v-/t-SNARE) complex and hypothesized that it coordinates the sequential tethering and docking of COPI vesicles to Golgi membranes. Interestingly, p115 has also been shown to be a Rab-1 effector that binds Rab-1-GTP directly and cross-linking experiments showed that it interacts with Syntaxin5, sly1, membrin, and rbet1 on microsomal membranes and COPII vesicles suggesting that p115-SNARE interactions may facilitate membrane “docking” (18).More recent in vivo studies showed that inhibition of GM130 or giantin binding to p115 had little effect on Golgi morphology or reassembly following mitosis, suggesting its role in maintaining Golgi structure might be independent of GM130 binding (19, 20). Thus post-mitotic Golgi reassembly could be rescued by p115 lacking the C-terminal GM130 binding motif (residues 935–962) but not by a mutant lacking the SNARE interacting CC1 domain (20). In addition, other studies have implicated GM130 and GRASP65 in Golgi ribbon formation and suggested that this may occur independently of interactions with p115 (21). Most significantly, knockdown of p115 using siRNA demonstrated that it is essential for maintaining Golgi structure, compartmentalization, and cargo traffic to the plasma membrane (20, 22).Earlier work from our laboratory demonstrated that p115 is cleaved in vitro by caspase-8, an initiator caspase, as well as by the executioner caspase-3 (10, 13). In response to apoptosis inducing drugs, p115 is cleaved in vivo at Asp757 to generate a 205-residue C-terminal fragment and an N-terminal polypeptide of 757 amino acids. Most significantly, expression of the p115 C-terminal fragment in otherwise healthy cells results in its translocation to the nucleus and the induction of apoptosis suggesting that this polypeptide plays a role in potentiating the apoptotic response. To further dissect p115 function during cell death, we have now determined the minimal domain in its C terminus that mediates apoptosis efficiently and analyzed the requirement of nuclear translocation in triggering the apoptotic response.  相似文献   

2.
In mammalian cells, the Golgi apparatus undergoes extensive fragmentation during apoptosis. p115 is a key vesicle tethering protein required for maintaining the structural organization of the Golgi apparatus. Here, we demonstrate that p115 was cleaved during apoptosis by caspases 3 and 8. Compared with control cells expressing native p115, those expressing a cleavage-resistant form of p115 delayed Golgi fragmentation during apoptosis. Expression of cDNAs encoding full-length or an NH2-terminal caspase cleavage fragment of p115 had no effect on Golgi morphology. In contrast, expression of the COOH-terminal caspase cleavage product of p115 itself caused Golgi fragmentation. Furthermore, this fragment translocated to the nucleus and its expression was sufficient to induce apoptosis. Most significantly, in vivo expression of the COOH-terminal fragment in the presence of caspase inhibitors, or upon coexpression with a cleavage-resistant mutant of p115, showed that p115 degradation plays a key role in amplifying the apoptotic response independently of Golgi fragmentation.  相似文献   

3.
4.
5.
Glycogen synthase kinase-3 (GSK3) and p53 play crucial roles in the mitochondrial apoptotic pathway and are known to interact in the nucleus. However, it is not known if GSK3 has a regulatory role in the mitochondrial translocation of p53 that participates in apoptotic signaling following DNA damage. In this study, we demonstrated that lithium and SB216763, which are pharmacological inhibitors of GSK3, attenuated p53 accumulation and caspase-3 activation, as shown by PARP cleavage induced by the DNA-damaging agents doxorubicin, etoposide and camptothecin. Furthermore, each of these agents induced translocation of p53 to the mitochondria and activated the mitochondrial pathway of apoptosis, as evidenced by the release of cytochrome C from the mitochondria. Both mitochondrial translocation of p53 and mitochondrial release of cytochrome C were attenuated by inhibition of GSK3, indicating that GSK3 promotes the DNA damage-induced mitochondrial translocation of p53 and the mitochondrial apoptosis pathway. Interestingly, the regulation of p53 mitochondrial translocation by GSK3 was only evident with wild-type p53, not with mutated p53. GSK3 inhibition also reduced the phosphorylation of wild-type p53 at serine 33, which is induced by doxorubicin, etoposide and camptothecin in the mitochondria. Moreover, inhibition of GSK3 reduced etoposide-induced association of p53 with Bcl2 and Bax oligomerization. These findings show that GSK3 promotes the mitochondrial translocation of p53, enabling its interaction with Bcl2 to allow Bax oligomerization and the subsequent release of cytochrome C. This leads to caspase activation in the mitochondrial pathway of intrinsic apoptotic signaling.  相似文献   

6.
Statins are cholesterol-lowing drugs with pleiotropic effects including cytotoxicity to cancer cells. In this study, we investigated the signaling pathways leading to apoptosis by simvastatin. Simvastatin induced cardinal features of apoptosis including increased DNA fragmentation, disruption of mitochondrial membrane potential (MMP), and increased caspase-3 activity by depleting isoprenoids in MethA fibrosarcoma cells. Interestingly, the simvastatin-induced apoptosis was accompanied by p53 stabilization involving Mdm2 degradation. The apoptosis was ameliorated in p53 knockdown clones of MethA cells as well as p53−/− HCT116 cells. The stabilized p53 protein translocated to mitochondria with Bax, and cytochrome c was released into cytosol. Moreover, knockdown or deficiency of p53 expression reduced both Bax translocation to mitochondria and MMP disruption in simvastatin-induced apoptosis. Taken together, these all indicate that stabilization and translocation of p53 to mitochondria is involved in Bax translocation to mitochondria in simvastatin-induced apoptosis.  相似文献   

7.
p73, an important developmental gene, shares a high sequence homology with p53 and induces both G(1) cell cycle arrest and apoptosis. However, the molecular mechanisms through which p73 induces apoptosis are unclear. We found that p73-induced apoptosis is mediated by PUMA (p53 up-regulated modulator of apoptosis) induction, which, in turn, causes Bax mitochondrial translocation and cytochrome c release. Overexpression of p73 isoforms promotes cell death and bax promoter transactivation in a time-dependent manner. However, the kinetics of apoptosis do not correlate with the increase of Bax protein levels. Instead, p73-induced mitochondrial translocation of Bax is kinetically compatible with the induction of cell death. p73 is localized in the nucleus and remains nuclear during the induction of cell death, indicating that the effect of p73 on Bax translocation is indirect. The ability of p73 to directly transactivate PUMA and the direct effect of PUMA on Bax conformation and mitochondrial relocalization suggest a molecular link between p73 and the mitochondrial apoptotic pathway. Our data therefore indicate that PUMA-mediated Bax mitochondrial translocation, rather than its direct transactivation, correlates with cell death. Finally, human DeltaNp73, an isoform lacking the amino-terminal transactivation domain, inhibits TAp73-induced as well as p53-induced apoptosis. The DeltaNp73 isoforms seem therefore to act as dominant negatives, repressing the PUMA/Bax system and, thus, finely tuning p73-induced apoptosis. Our findings demonstrate that p73 elicits apoptosis via the mitochondrial pathway using PUMA and Bax as mediators.  相似文献   

8.
We have investigated the mechanism by which nitric oxide (NO) induces the death of mouse astrocytes. We show that NO (from donor diethylenetriamine-NO adduct) induces death with several features of apoptosis, including chromatin condensation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, Bax translocation to the mitochondria and cytochrome c release, but no caspase activation or nuclear fragmentation is observed. Nitric oxide also elevates p53 expression, causing a concomitant increase in p53 serine 18 phosphorylation and p53 translocation from the cytoplasm to the nucleus. Activation of Bax and p53 is important for NO-induced apoptosis-like cell death because Bax- or p53-deficient astrocytes are much more resistant than wild-type cells to the same NO treatment. We further demonstrate that LY294002-sensitive kinases are responsible for controlling serine 18 phosphorylation of p53, thereby regulating the pro-apoptotic activity of p53 in astrocytes. While apoptosis is suppressed in the presence of LY294002, however, death by necrosis is increased, suggesting that LY294002-sensitive kinases additionally suppress a latent necrotic response to NO. We conclude that NO-induced death in astrocytes is mediated by p53- and Bax-dependent mechanisms, although full manifestation of apoptosis is aborted by concomitant inhibition of caspase activation. More generally, our data suggest that apoptotic mediators should be evaluated as the cause of cell death even in cases where a full apoptotic phenotype is lacking.  相似文献   

9.
10.
Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.  相似文献   

11.
The p53 tumor suppressor protein is a major regulator of cell growth arrest and apoptosis in response to DNA damage. Both p53 function and stability are tightly controlled by Mdm2, which binds to the p53 N-terminus and targets p53 for ubiquitin-mediated proteolysis. Previous studies suggest that adrenalectomy-induced neuronal apoptosis is p53-dependent. Here we demonstrate both nuclear accumulation and functional activation of p53 protein in apoptotic hippocampal neurons from adrenalectomized rats. Increased p53 expression occurred despite the accumulation of its negative regulator, Mdm2, and the formation of p53-Mdm2 complexes. The persistence of p53 expression was explained by a striking decrease in free ubiquitin in p53-positive neurons. The addition of exogenous ubiquitin to p53-Mdm2 complexes from apoptotic neurons restored p53 degradation. These findings demonstrate a novel mechanism of p53 stabilization mediated by decreased ubiquitin levels. Regulation of free ubiquitin may therefore be an effective way to modulate p53-dependent apoptosis in certain cell types.  相似文献   

12.
TIAF1 is a TGF-beta 1-induced factor that protects L929 fibroblasts from TNF-mediated apoptosis. In contrast, overexpressed TIAF1 induces growth inhibition and apoptosis of monocytic U937 and various nonfibroblast cells. TIAF1-mediated apoptosis of U937 cells involves upregulation of p53, p21, and Smad2/4, but downregulation of ERK phosphorylation. To determine whether p53 and TIAF1 functionally interact in regulating cell death, ectopic TIAF1 and p53 were shown to induce apoptosis of U937 cells in both synergistic and antagonistic manners. At optimal levels both TIAF1 and p53 mediated apoptosis cooperatively. Also, both proteins suppressed adherence-independent growth of L929 cells. In contrast, initiation of apoptosis by overexpressed TIAF1 was blocked by low doses of p53, and vice versa. Furthermore, ectopic p53 blocked an ongoing apoptosis in U937 cells stably expressing TIAF1. Yeast two-hybrid analyses failed to demonstrate the binding of p53 with TIAF1, suggesting an unidentified protein that links the p53/TIFA1 interaction. Suppression of TIAF1 expression by siRNA could not inhibit Ser15 phosphorylation in p53 in response to UV and etoposide. However, nuclear translocation of these Ser15-phosphorylated p53 was significantly reduced in TIAF1-silenced cells. Taken together, TIAF1 and p53 functionally interact in regulating apoptosis, and TIAF1 is likely to participate in the nuclear translocation of activated p53.  相似文献   

13.
The effect of lipopolysaccharide on doxorubicin-induced cell death was studied by using mouse RAW 264.7 macrophage cells. Pretreatment with lipopolysaccharide at 10 ng/mL prevented doxorubicin-induced cell death and the inhibition was roughly dependent on the concentration of lipopolysaccharide. Posttreatment with lipopolysaccharide for 1 hour also prevented doxorubicin-induced cell death. Lipopolysaccharide inhibited DNA fragmentation and caspase-3 activation in doxorubicin-treated RAW 264.7 cells, suggesting the prevention of doxorubicin-induced apoptosis. Lipopolysaccharide did not significantly inhibit doxorubicin-induced DNA damage detected by single-cell gel electrophoresis (comet) assay. Lipopolysaccharide definitely inhibited the stabilization and nuclear translocation of p53 in doxorubicin-treated RAW 264.7 cells. Lipopolysaccharide, as well as being an inhibitor of p53, abolished doxorubicin-induced apoptosis. Therefore, p53 was suggested to play a pivotal role in the prevention of doxorubicin-induced apoptosis in RAW 264.7 cells by lipopolysaccharide.  相似文献   

14.
《Molekuliarnaia biologiia》2005,39(3):445-456
Malignant melanoma has poor prognosis because of its high metastatic potential and resistance to chemotherapy. A possible approach to more effective therapy is induction of p53-dependent apoptosis. This approach is promising, since the wild-type p53 is expressed in most melanomas. An attempt was made to estimate the functional activity of p53 in several malignant melanoma cell lines. Most lines were characterized by a high protein level and nuclear localization of p53. All cell lines expressing the wild-type p53 showed stabilization of p53, its translocation into the nucleus, and activation of several target genes in response to DNA-damaging agents, suggesting that p53 was functionally active. A high-molecular-weight protein localized in the cytoplasm and mimicking a p53 epitope was found in several cell lines. It was shown that the DO-1 epitope of this protein does not derive from p53, ruling out cytoplasmic retention of p53 in melanoma cell lines. A mechanism of camptothecin-induced stabilization of p53 by decreasing the level of the HDM2 mRNA was described for melanoma cells but not for normal melanocytes, which suggested a differential effect of camptothecin on tumor-derived and primary cells.  相似文献   

15.
The cardiotoxic effects of doxorubicin, a potent chemotherapeutic agent, have been linked to DNA damage, oxidative mitochondrial damage, and nuclear translocation of p53, but the exact molecular mechanisms causing p53 transactivation and doxorubicin-induced cardiomyopathy are not clear. The present study was carried out to determine whether extracellular signal-regulated kinases (ERKs), which are known to be activated by DNA damaging agents, are responsible for doxorubicin-induced p53 activation and oxidative mitochondrial damage in H9c2 cells. Cell death was measured by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling, annexin V-fluorescein isothiocyanate, activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase (PARP). We found that doxorubicin produced cell death in H9c2 cells in a time-dependent manner, beginning at 6 h, and these changes are associated decreased expression of Bcl-2, increases in Bax and p53 upregulated modulator of apoptosis-alpha expression, and collapse of mitochondria membrane potential. The changes in cell death and Bcl-2 family proteins, however, were preceded by earlier activation and nuclear translocation of ERKs, followed by increased phosphorylation at Ser15 and nuclear translocation of the phosphorylated p53. The functional importance of ERK1/2 and p53 in doxorubicin-induced toxicity was further demonstrated by the specific ERK inhibitor U-0126 and p53 inhibitor pifithrin (PFT)-alpha, which abrogated the changes in Bcl-2 family proteins and cell death produced by doxorubicin. U-0126 blocked the phosphorylation and nuclear translocation of both ERK1/2 and p53, whereas PFT-alpha blocked only the changes in p53. Doxorubicin and ERK inhibitors produced similar changes in ERK1/2-p53, PARP, and caspase-3 in neonatal rat cultured cardiomyocytes. Thus we conclude that ERK1/2 are functionally linked to p53 and that the ERK1/2-p53 cascade is the upstream signaling pathway responsible for doxorubicin-induced cardiac cell apoptosis. ERKs and p53 may be considered as novel therapeutic targets for the treatment of doxorubicin-induced cardiotoxicity.  相似文献   

16.
Many cell lines derived from neuroblastoma (NB) carry the wild-type p53 gene with a p53-dependent apoptotic pathway that is responsive to DNA damaging agents. A recent study has demonstrated that retinoic acid (RA) pretreatment of NB cells promotes chemoresistance to apoptosis induced by chemotherapeutic agents. We examine here the possible contribution of the p53 pathway to the chemoresistance response associated with the RA treatment in NB cells. Upon treatment with RA (1-10 microM) for 4 days, the human NB cells, SH-SY5Y, developed resistance selectively to p53-dependent apoptotic stimuli including gamma-irradiation, etoposide, and 1-(5-isoquinolinyl sulfonyl)-2-methylpiperazine (H-7). Interestingly, RA affected the ability of H-7 to induce nuclear accumulation of the p53 protein without altering its effect on elevating the steady-state level of p53, suggesting that drug-induced up-regulation and nuclear accumulation of the wild-type p53 protein are separable processes. The modulation of nuclear import of p53 protein by RA may thus represent a potential mechanism by which certain tumor cells with the wild-type p53 gene develop resistance to chemotherapeutic agents.  相似文献   

17.
18.
19.
The Golgi apparatus undergoes irreversible fragmentation during apoptosis, in part as a result of caspase-mediated cleavage of several Golgi-associated proteins. However, Golgi structure and orientation is also regulated by the cytoskeleton and cytoskeletal changes have been implicated in inducing apoptosis. Consequently, we have analyzed the role of actin filaments and microtubules in apoptotic Golgi fragmentation. We demonstrate that in Fas receptor-activated cells, fragmentation of the Golgi apparatus was an early event that coincided with release of cytochrome c from mitochondria. Significantly, Golgi fragmentation preceded major changes in the organization of both the actin cytoskeleton and microtubules. In staurosporine-treated cells, actin filament organization was rapidly disrupted; however, the Golgi apparatus maintained its juxtanuclear localization and underwent complete fragmentation only at later times. Attempts to stabilize actin filaments with jasplakinolide prior to treatment with staurosporine did not prevent Golgi fragmentation. Finally, in response to Fas receptor activation or staurosporine treatment the levels of beta-actin or alpha-tubulin remained unaltered, whereas several Golgi proteins, p115 and golgin-160, underwent caspase-mediated cleavage. Our data demonstrate that breakdown of the Golgi apparatus is an early event during apoptosis that occurs independently of major changes to the actin and tubulin cytoskeleton.  相似文献   

20.
The molecular events associated with apoptosis induced by two distinct triggers (1) serum withdrawal and (2) etoposide treatment were investigated in the human lung carcinoma cell line A549. Although both serum withdrawal and etoposide treatment resulted in internucleosomal DNA fragmentation, the morphologic features were distinct. Serum deprived apoptotic cells appeared small, round and refractile, with little evidence of nuclear fragmentation; etoposide-induced apoptotic cells appeared enlarged and flattened and displayed prominent nuclear fragmentation. p53 and p21/waf1 protein levels were elevated in etoposide-treated cells, but not in cells subjected to serum with-drawal. Apoptosis induced by both treatments was accompanied by a significant reduction in Rb protein levels. However, etoposide treatment led to hypo-phosphorylation of Rb, while serum withdrawal did not alter the Rb phosphorylation pattern. Serum withdrawal-induced apoptosis was correlated with activation of JNK and suppression of ERK activities, while both JNK and ERK activities were slightly elevated during etoposid- induced apoptosis. Together, these results support the hypothesis that apoptosis induced by serum withdrawal and etoposide treatment occurs through different pathways and involves distinct mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号