首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian Sterile 20-like kinase 1 (MST1) protein kinase plays an important role in the apoptosis induced by a variety of stresses. The MST1 is a serine/threonine kinase that is activated upon apoptotic stimulation, which in turn activates its downstream targets, JNK/p38, histone H2B and FOXO. It has been reported that overexpression of MST1 initiates apoptosis by activating p53. However, the molecular mechanisms underlying MST1-p53 signaling during apoptosis are unclear. Here, we report that MST1 promotes genotoxic agent-induced apoptosis in a p53-dependent manner. We found that MST1 increases p53 acetylation and transactivation by inhibiting the deacetylation of Sirtuin 1 (Sirt1) and its interaction with p53 and that Sirt1 can be phosphorylated by MST1 leading to the inhibition of Sirt1 activity. Collectively, these findings define a novel regulatory mechanism involving the phosphorylation of Sirt1 by MST1 kinase which leads to p53 activation, with implications for our understanding of signaling mechanisms during DNA damage-induced apoptosis.  相似文献   

2.
The objective of this study was to characterize the apoptotic pathways activated by fast neutrons in the human lymphoblastoid cell line TK6 and in its p53 −/− derivative. Our results demonstrate that while p53 is not required for neutron-induced apoptosis, as previously shown, it does affect the kinetics of apoptosis and the molecular pathways leading to the activation of effector caspases. Indeed, rapid p53-dependent apoptosis was associated with the activation of caspase 9, 8, 3, and 7 and the cleavage of BID by caspase 8. In contrast, the slow-occurring p53-independent apoptotic process, mediated by caspase 7, took place without BID cleavage and loss of transmembrane mitochondrial potential. Altogether, our findings highlight an essential role for caspase 8-mediated BID cleavage, in the course of p53-dependent apoptosis triggered by fast neutrons in lymphoid cells. They also demonstrate that this mechanism is not involved in p53-independent apoptosis.  相似文献   

3.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   

4.
In mammalian cells, the Golgi apparatus undergoes extensive fragmentation during apoptosis. p115 is a key vesicle tethering protein required for maintaining the structural organization of the Golgi apparatus. Here, we demonstrate that p115 was cleaved during apoptosis by caspases 3 and 8. Compared with control cells expressing native p115, those expressing a cleavage-resistant form of p115 delayed Golgi fragmentation during apoptosis. Expression of cDNAs encoding full-length or an NH2-terminal caspase cleavage fragment of p115 had no effect on Golgi morphology. In contrast, expression of the COOH-terminal caspase cleavage product of p115 itself caused Golgi fragmentation. Furthermore, this fragment translocated to the nucleus and its expression was sufficient to induce apoptosis. Most significantly, in vivo expression of the COOH-terminal fragment in the presence of caspase inhibitors, or upon coexpression with a cleavage-resistant mutant of p115, showed that p115 degradation plays a key role in amplifying the apoptotic response independently of Golgi fragmentation.  相似文献   

5.
Securin has been shown to regulate genomic stability; nevertheless, the role of securin on the cytotoxicity after radiation is still unclear. Exposure to 1–10 Gy X-ray radiation induced cell death in RKO colorectal cancer cells. The protein levels of securin, p53, and p21 were elevated by radiation. The proteins of phosphorylation of p53 at serine-15, which located on the nuclei of cancer cells, were highly induced by radiation. However, radiation increased securin proteins, which located on both of nuclei and cytoplasma in RKO cells. The p53-wild type colorectal cancer cells were more susceptible on cytotoxicity than the p53-mutant cells following exposure to radiation. Besides, the existence of securin in colorectal cancer cells induced higher apoptosis than the securin-null after radiation. Securin proteins were elevated by radiation in the p53-wild type and -mutant cells; furthermore, radiation raised the p53 protein expression in both the securin-wild type and -null cells. As a whole, these findings suggest that the existence of securin promotes apoptosis via a p53-indpendent pathway after radiation in human colorectal cancer cells.  相似文献   

6.
Kuo PL  Chiang LC  Lin CC 《Life sciences》2002,72(1):23-34
Resveratrol, a phytoalexin found in many plants, has been reported to possess a wide range of pharmacological properties and is one of the promising chemopreventive agents for cancer. Here, we examined the antiproliferation effect of resveratrol in two human liver cancer cell lines, Hep G2 and Hep 3B. Our results showed that resveratrol inhibited cell growth in p53-positive Hep G2 cells only. This anticancer effect was a result of cellular apoptotic death induced by resveratrol via the p53-dependent pathway. Here we demonstrated that the resveratrol-treated cells were arrested in G1 phase and were associated with the increase of p21 expression. In addition, we also illustrated that the resveratrol-treated cells had enhanced Bax expression but they were not involved in Fas/APO-1 apoptotic signal pathway. In contrast, the p53-negative Hep 3B cells treated with resveratrol did not show the antiproliferation effect neither did they show significant changes in p21 nor Fas/APO-1 levels. In summary, our study demonstrated that the resveratrol effectively inhibited cell growth and induced programmed cell death in Hepatoma cells on a molecular basis. Furthermore, these results implied that resveratrol might also be a new potent chemopreventive drug candidate for liver cancer as it played an important role to trigger p53-mediated molecules involved in the mechanism of p53-dependent apoptotic signal pathway.  相似文献   

7.
Kuo YC  Kuo PL  Hsu YL  Cho CY  Lin CC 《Life sciences》2006,78(22):2550-2557
Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), one of the simplest naturally occurring alkaloids, was isolated from the leaves of the evergreen tree Ochrosia elliptica Labill (Apocynaceae). Here, we reported that ellipticine inhibited the cell growth of human hepatocellular carcinoma cell line HepG2 and provided molecular understanding of this effect. The XTT assay results showed that ellipticine decreased the cell viability of HepG2 cells in a dose- and time-dependent manner, and the IC50 value was 4.1 microM. Furthermore, apoptosis induction by ellipticine in HepG2 cells was verified by the appearance of DNA fragmentation and annexin V-FITC/propidium iodide (PI) staining assay. Ellipticine treatment was found to result in the upregulation of p53, Fas/APO-1 receptor and Fas ligand. Besides, ellipticine also initiated mitochondrial apoptotic pathway through regulation of Bcl-2 family proteins expression, alteration of mitochondrial membrane potential (DeltaPsim), and activation of caspase-9 and caspase-3. Taken together, ellipticine decreased the cell growth and induced apoptosis in HepG2 cell.  相似文献   

8.
9.
Dietary flavonols have been found to possess preventive and therapeutic potential against several kinds of cancers. This study is conducted to investigate the anti-proliferation effects of kaempferol, a major component of food flavonols, against colon cancer cells. In the human HCT116 colon cancer cell line, kaempferol induced p53-dependent growth inhibition and apoptosis. Furthermore, kaempferol was found to induce cytochrome c release from mitochondria and activate caspase-3 cleavage. The Bcl-2 family proteins including PUMA were involved in this process. Kaempferol also induced ATM and H2AX phosphorylation in HCT116 cells, inhibition of ATM by a chemical inhibitor resulted in abrogation of the downstream apoptotic cascades. These findings suggest kaempferol could be a potent candidate for colorectal cancer management.  相似文献   

10.
The enzymatic activity of phospholipase D (PLD) is known to be essential for cell survival and protection from apoptosis. However, the mechanisms regulating PLD activity during apoptosis remain unknown. Here we report that cleavage of PLD1 by caspases facilitates p53-mediated apoptosis. Cleavage of PLD1 into an N-terminal fragment (NF-PLD1) and a C-terminal fragment at the amino-acid sequence, DDVD(545), led to a reduction in PLD1 activity. However, a caspase-resistant mutant form of PLD1 retained significant levels of enzymatic activity and apoptotic function as compared to wild-type PLD1. Exogenous NF-PLD1 expression induced apoptosis through a dominant-negative effect on the activity of endogenous PLD1. During apoptosis, a small fraction of PLD1 is cleaved by caspases in a p53-independent manner and NF-PLD1 amplifies apoptotic signaling through inhibition of the remaining PLD1 activity. As PLD1 suppresses the ATM-Chk2-p53 pathway, elimination of PLD1 activity through NF-PLD1 or si-RNA against PLD1 increases apoptosis in a p53-dependent manner. Taken together, our results reveal that cleavage of PLD1 by caspases promotes apoptosis via modulation of the p53-dependent cell death pathway.  相似文献   

11.
12.
13.
14.
Lysosomal regulation is a poorly understood mechanism that is central to degradation and recycling processes. Here we report that LAMTOR1 (late endosomal/lysosomal adaptor, MAPK and mTOR activator 1) downregulation affects lysosomal activation, through mechanisms that are not solely due to mTORC1 inhibition. LAMTOR1 depletion strongly increases lysosomal structures that display a scattered intracellular positioning. Despite their altered positioning, those dispersed structures remain overall functional: (i) the trafficking and maturation of the lysosomal enzyme cathepsin B is not altered; (ii) the autophagic flux, ending up in the degradation of autophagic substrate inside lysosomes, is stimulated. Consequently, LAMTOR1-depleted cells face an aberrant lysosomal catabolism that produces excessive reactive oxygen species (ROS). ROS accumulation in turn triggers p53-dependent cell cycle arrest and apoptosis. Both mTORC1 activity and the stimulated autophagy are not necessary to this lysosomal cell death pathway. Thus, LAMTOR1 expression affects the tuning of lysosomal activation that can lead to p53-dependent apoptosis through excessive catabolism.  相似文献   

15.
Although suppression of apoptosis has been implicated as a mechanism for the hepatocarcinogenicity of peroxisome proliferators (PPs), they can also induce cell death in rat AH130 and human HepG2 hepatoma cells. To study how PPs induce cell death and to characterize the molecular events involved, we administered the hypolipidemic BR931, a peroxisome proliferator, to rat hepatoma FaO cells. Treatment with increasing concentrations of BR931 (0.015 to 0.6 mM) reduced cell viability in a dose- and time-dependent manner, associated with DNA fragmentation and morphological changes characteristic of apoptosis. BR931 also caused phosphorylation of p53 within 3 hours, translocation of the pro-apoptotic Bax protein to mitochondria, release of cytochrome-c into the cytosol, and activation of caspase-9 and -3. These results indicated that BR931 activated the intrinsic caspase cascade. Pretreatment with three different antioxidants, N-acetylcysteine, Vitamin C and Trolox, reduced apoptosis, suggesting that reactive oxygen species (ROS) plays a role in BR931-induced apoptosis. In support of this hypothesis, BR931 produced increased levels of 8-hydroxy-deoxy-guanosine, a marker of DNA oxidative damage. Antioxidants prevented the p53 phosphorylation, up-regulation of Bax and BR931-induced apoptosis. These results suggest that BR931 can increase generation of ROS, leading to DNA damage and p53 phosphorylation, which, in turn, induces the activation of Bax, release of cytochrome-c from mitochondria and activation of caspases, culminating in cell death.  相似文献   

16.
17.
18.
19.
20.
Selenadiazole derivative is one kind of synthetic organoselenium compounds with potent and broad-spectrum antitumor activity. In this study, we showed that anthrax [1,2-c] [1,2,5] selenadiazolo-6,11-dione (ASDO), an novel selenadiazole derivative, induced time- and dose-dependent apoptotic cell death in MCF-7 human breast carcinoma cells, as indicated by accumulation of sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and PARP cleavage. ASDO-induced apoptosis was significantly inhibited by a general caspase inhibitor z-VAD-fmk, demonstrating the important role of caspases in ASDO-induced apoptotic pathway. Treatment of MCF-7 cells with ASDO resulted in a rapid depletion of mitochondrial membrane potential and release of cytochrome c and Smac/Diablo through up-regulation of Bax, Bad and PUMA expression and down-regulation of Bcl-xl expression. Moreover, ASDO treatment up-regulated the expression levels of total p53 and its target gene p21Waf1. Silencing of p53 activation with RNA interference effectively blocked the ASDO-induced cell PARP cleavage, DNA fragmentation and caspase activation. Furthermore, ASDO-induced apoptosis was interestingly found to be independent of reactive oxygen species production. Taken together, we conclude that ASDO induces MCF-7 cell apoptosis through a p53-dependent and mitochondria-mediated pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号