首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Seed weight, percentage germination, seedling growth, and nutrient concentrations (Mg, Na, K, Zn, Cu and P) of whole seeds, and of seed coats and embryos separately of two tree species, the native Prosopis cineraria and the invasive alien P. juliflora from semi-arid and arid areas of north and north-west India, were analysed to understand the differences in their ecology. Seeds of P. cineraria were heavier than those of P. juliflora. Percent germination was similar in the two species, but seedling growth was faster in P. juliflora than in P. cineraria. Nutrient concentrations of seeds of the two species were similar (except Cu). Nutrient concentrations in the embryo were higher in P. cineraria, while those in the seed coat were higher in P. juliflora. The relative allocation of nutrients to seed coat was higher in P. juliflora than in P. cineraria. Nutrient-rich embryos and slow growth, along with a staggered seed germination pattern in the native P. cineraria could be linked to delayed establishment as well, in the substratum. Faster growth of the nutrient-poor embryos in P. juliflora along with its simultaneous seed germination pattern, and creation of a favourable microenvironment through leaching of nutrients from a nutrient-rich seed coat can facilitate immediate and successful establishment of this alien species in the invaded habitats.  相似文献   

2.
Ecophysiological traits of Prosopis juliflora (Sw.) DC. and a phylogenetically and ecologically similar native species, Anadenanthera colubrina (Vell.) Brenan, were studied to understand the invasive species’ success in caatinga, a seasonally dry tropical forest ecosystem of the Brazilian Northeast. To determine if the invader exhibited a superior resource-capture or a resource-conservative strategy, we measured biophysical and biochemical parameters in both species during dry and wet months over the course of two years. The results show that P. juliflora benefits from a flexible strategy in which it frequently outperforms the native species in resource capture traits under favorable conditions (e.g., photosynthesis), while also showing better stress tolerance (e.g., antioxidant activity) and water-use efficiency in unfavorable conditions. In addition, across both seasons the invasive has the advantage over the native with higher chlorophyll/carotenoids and chlorophyll a/b ratios, percent N, and leaf protein. We conclude that Prosopis juliflora utilizes light, water and nutrients more efficiently than Anadenanthera colubrina, and suffers lower intensity oxidative stress in environments with reduced water availability and high light radiation.  相似文献   

3.
To revegetate denuded areas, indiscriminate introductions of rapidly growing plants have taken place. In majority of the cases, the denuded areas do start looking green in a very short span of time. However, whether or not the introduced plants also bring about amelioration of the habitat needs to be evaluated. A comparative assessment of some leaflet and soil characteristics of the introduced Prosopis juliflora, and the native P. cineraria revealed that the former with its continued higher nutrient demand disturbs the physico-chemical profile of the substratum, ultimately making it nutrient deficient. The data presented call for a reappraisal of the practice of introducing plants into alien environments.Abbreviations EC = Electric conductivity - OC = Organic carbon - PC = Prosopis cineraria - PJ = Prosopis juliflora  相似文献   

4.
Whether or not species track native climatic conditions during invasions (i.e., climate match hypothesis) is fundamental to understand and prevent potential impacts of invasive species. Recent empirical work suggests that climatic mismatches between native and invasive ranges are pervasive. Whether these differences are due to adaptation to new climatic spaces in the invasive range or due to partial filling of the potential climatic space are still subject to debate. Here, we analyze climatic niche dynamics associated with the invasion of the two most common invasive plants in Brazilian semi-arid areas, Prosopis juliflora and Prosopis pallida. These species have been simultaneously introduced in the region, which creates a unique opportunity to compare their niche dynamics during invasion. Given that P. juliflora have a much wider native range size, we expect these species would present different dispersal potentials, which might translate into different unfilling levels. Using an ordination method with kernel smoother and null models, we contrasted climate spaces occupied by each species in both native and invasive ranges. We further used ecological niche models (ENMs) to compare reciprocal predictions of potentially suitable areas. Against our expectation based on differences in native range sizes, climatic niches of P. juliflora and P. pallida overlapped greatly, both in their native and invasive ranges. Our results support niche conservatism during the invasion process. Climatic mismatches among native and invaded ranges were exclusively attributed to unfilling of native climates in the invasive range. Both species showed similar unfilling levels. Likewise, ENMs predicted regions not yet occupied in the invasive range, revealing a potential for further expansion. We discuss colonization time lag and founder effect as potential mechanisms that may have prevented these species to fully occupy their native niches in the invasive range.  相似文献   

5.
There has been much taxonomic confusion over the identification of Prosopis species, especially where introduced. Prosopis juliflora is the most widespread species in the arid and semi-arid tropics, although it has been confused with other species, particularly the closely related Prosopis pallida. In this study, RAPDs markers were used for the first time to distinguish between these species. Eighteen primers were used in amplification reactions, which yielded an average of 120 bands per accession. A dendrogram showing genetic similarities among accessions was constructed using UPGMA cluster analysis and the Nei and Li similarity coefficient. The genetic similarity observed between P. juliflora and P. pallida is similar to the value in sympatric Prosopis species in North America, and reconsideration of the series rank in section Algarobia is suggested. Species-specific markers confirmed that material in Burkina Faso is P. juliflora, but suggested that material collected in Brazil, Cape Verde and Senegal is P. pallida, whereas this has previously been identified as P. juliflora.  相似文献   

6.
Litterfall and fine root production is a major pathway for carbon and nutrient cycling in forest ecosystems. We investigated leaf litterfall, fine-root mass, production and turnover rate in the upper soil (0–30 cm) under four major tree species (Leucaena leucocephala, Acacia nilotica, Azadirachta indica, Prosopis juliflora) of the semi-arid region of India. All the four tree species showed an unimodal peak of leaf litterfall with distinct seasonality. Leucaena leucocephala and Acacia nilotica had maximum leaf litterfall between September and December while Azadirachta indica and Prosopis juliflora shed most of their leaves between February and May. Annual leaf litterfall of the four species ranged from 3.3 Mg ha?1 (Leucaena leucocephala) to 8.1 Mg ha?1 (Prosopis juliflora). Marked seasonal variations in amount of fine root biomass were observed in all the four tree species. Fine root production was maximum in Prosopis juliflora (171 g m?2 y?1) followed by Azadirachta indica (169 g m?2 y?1), Acacia nilotica (106 g m?2 y?1) and Leucaena leucocephala (79 g m?2 y?1). Fine root biomass showed a seasonal peak after the rainy season but fell to its lowest value during the winter and dry summer season. Fine root turnover rate ranged from 0.56 to 0.97 y?1 and followed the order Azadirachta indica > Leucaena leucocephala > Prosopis juliflora > Acacia nilotica. The results of this study demonstrated that Prosopis juliflora and Azadirachta indica had greater capability for maintaining site productivity as evidenced from greater leaf litterfall and fine root production.  相似文献   

7.
The genus Prosopis (Leguminosae, Mimosoideae), comprises 44 species widely distributed in arid and semi-arid zones. Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth and P. juliflora (Sw.) DC. are the two species that are truly tropical apart from P. africana, which is native to tropical Africa (Pasiecznik et al. 2004), and they have been introduced widely beyond their native ranges. However, taxonomic confusion within the genus has hampered exploitation and better management of the species. The present study focusses primarily on evaluating the genetic relationship between Prosopis species from the section Algarobia, containing most species of economic importance, though P. tamarugo from section Strombocarpa is also included for comparison. In total, 12 Prosopis species and a putative P. pallida × P. chilensis hybrid were assessed for their genetic relationships based on RAPD markers and microsatellite transferability. The results show that P. pallida and P. juliflora are not closely related despite some morphological similarity. Evidence also agrees with previous studies which suggest that the grouping of series in section Algarobia is artificial.  相似文献   

8.
The problems of delimitation of species of Prosopis originate from the few morphological discontinuities which exist among some of them; some, however, originated as a result of wide distribution of germplasm without proper knowledge of the species, in particular, much material catalogued as P. juliflora, but being of other species, was distributed for reforestation projects worldwide. This work tests the morphological results obtained for P. pallida and P. limensis of the Peruvian–Ecuadorian coast and for P. juliflora of the Caribbean Basin of Colombia and Venezuela utilizing a study of AFLPs and a study of the morphology of plantlets developed in a conventional garden study. The phenogram obtained for the AFLPs demonstrates each of the three species to be a well differentiated cluster and the molecular variance between them is significantly greater than the variance within each species. Study of the plantlets also indicates statistically significant differences for four morphological characters between P. juliflora and the other two species (P. pallida and P. limensis). These results, in addition to the morphological differentiation evident between adult plants of P. pallida and P. limensis and the clear separation of these two species from P. juliflora, corroborate the genetic identity of the three taxa analyzed.  相似文献   

9.
Belowground processes are rarely considered in comparison studies of native verses invasive species. We examined relationships between belowground fine root production and lifespan, leaf phenology, and seasonal nitrogen dynamics of Lonicera japonica (non-native) versus L. sempervirens (native) and Frangula alnus (non-native) versus Rhamnus alnifolia (native), over time. First and second order fine roots were monitored from 2010 to 2012 using minirhizotron technology and rhizotron windows. 15N uptake of fine roots was measured across spring and fall seasons. Significant differences in fine root production across seasons were seen between Lonicera species, but not between Frangula and Rhamnus, with both groups having notable asynchrony in regards to the timing of leaf production. Root order and the number of root neighbors at the time of root death were the strongest predictors of root lifespan of both species pairs. Seasonal 15N uptake was higher in spring than in the fall, which did not support the need for higher root activity to correspond with extended leaf phenology. We found higher spring 15N uptake in non-native L. japonica compared to native L. sempervirens, although there was no difference in 15N uptake between Frangula and Rhamnus species. Our findings indicate the potential for fast-growing non-native Lonicera japonica and Frangula alnus to outcompete native counterparts through differences in biomass allocation, root turnover, and nitrogen uptake, however evidence that this is a general strategy of invader dominance is limited.  相似文献   

10.
Invasions of non-native species represent a global problem of great scientific interest. Here we study in detail the response in population and life history characteristics of closely related native species, with divergent habitat preferences, that are impacted by an invading species over a sufficient time period to allow a new stable state to become established. A time series of 20 years starting at the first occurrence of the invader (vendace Coregonus albula (L.)) allows exploration of the long term population and life history response of two ecologically, morphologically, and genetically different native sympatric morphs (DR- and SR-) of congeneric whitefish C. lavaretus (L.). The whitefish morphs are taxonomically equally related to the invading vendace, but only the planktivorous DR-whitefish share its pelagic niche. We would expect that the ecological differences between the whitefish morphs may be used as a predictor of competitive effects. Vendace exhibited an initial boom-and-bust development, and has continued to fluctuate in density. The responses of the pelagic DR-whitefish were: i) an immediate habitat shift, ii) a subsequent population decline caused by increased annual mortality, and iii) a new stable state at a lower density and apparently relaxed competition. The ecologically more distant benthivorous SR-whitefish also showed significant, but a much more limited response during this process, indicating damped indirect interactions through the food-web. This long-term case-study found that in two native eco-species equally related to the invader, only one of the eco-species was highly affected. Direct competition for resources is obviously important for species interactions, whereas the taxonomic relatedness per se seems to offer little predictive power for invasion effects.  相似文献   

11.
Non-native species have invaded habitats worldwide, greatly impacting the structure and function of native communities and ecosystems. To better understand mechanisms of invasion impacts and how to restore highly impacted and transformed ecosystems, studies are needed that evaluate invader effects on both biotic communities and structural characteristics. On Santa Cruz Island in Galápagos we compared biotic (plant species richness, diversity, and community composition) and structural (canopy openness, forest height, and leaf litter) characteristics of a relic forest dominated by an endemic and highly threatened tree and a forest dominated by an invasive tree. The forests are located within the historical distribution of the endemic tree, which now occupies only 1% of its original extent. We found that the invaded forest had 42% lower native plant species richness and 17% less plant diversity than the endemic tree dominated forest. Additionally, with the invader there was 36% greater non-native plant species richness, 37% higher non-native plant diversity, and highly dissimilar plant composition when compared to the endemic-dominated forest. Additionally, the invaded forest had a more open and taller tree canopy and greater leaf litter cover than native forest. The presence of the invasive tree and the associated forest structural changes were the primary factors in models that best explained higher non-native diversity in the invaded forest. Our correlational results suggest that an invasive tree has significantly altered plant assemblage and forest structural characteristics in this unique ecosystem. Experiments that remove the invader and evaluate native plant community responses are needed to identify thresholds for practical restoration of this threatened and biologically unique native forest.  相似文献   

12.
Mono-dominance by invasive species provides opportunities to explore determinants of plant distributions and abundance; however, linking mechanistic results from small scale experiments to patterns in nature is difficult. We used experimentally derived competitive effects of an invader in North America, Acroptilon repens, on species with which it co-occurs in its native range of Uzbekistan and on species with which it occurs in its non-native ranges in North America, in individual-based models. We found that competitive effects yielded relative abundances of Acroptilon and other species in models that were qualitatively similar to those observed in the field in the two ranges. In its non-native range, Acroptilon can occur in nearly pure monocultures at local scales, whereas such nearly pure stands of Acroptilon appear to be much less common in its native range. Experimentally derived competitive effects of Acroptilon on other species predicted Acroptilon to be 4–9 times more proportionally abundant than natives in the North American models, but proportionally equal to or less than the abundance of natives in the Eurasian models. Our results suggest a novel way to integrate complex combinations of interactions simultaneously, and that biogeographical differences in the competitive effects of an invader correspond well with biogeographical differences in abundance and impact.  相似文献   

13.
Exotic woody weed plants are a very serious threat to seed dispersed by ungulate in the tropical forest of Asia. The ungulates in Point Calimere Wildlife Sanctuary (PCWS) are a significant role in native indigenous seed dispersal. The exotic woody weed tree Prosopis juliflora prevalence distributed in the PCWS and they might potentially alter the native medicinal plant species. In the present investigation, we have assessed the seed dispersal by ungulates in PCWS from January to March 2017. Four different ungulate species were selected to understand their seed dispersal rate of different plant species in selected sanctuary. This investigation was planned to confirm the seed dispersal by ungulates of blackbuck, spotted deer, wild boar and feral horse. Among the four different ungulates tested, the maximum numbers of pellets collected from blackbuck and no seed found in their pellets. The low quantities of pellets were collected from wild boar and this study has recorded medium-sized ungulates which dispersed variety of plant. However, the dispersal of the seed of medicinal plants were not considerably high and relatively moderate percentage of seeds dispersal occurred in medium-sized ungulates like wild boar and spotted deer. P. juliflora had 100% seed germination rate were observed from the faecal samples of wild boar and feral horse. The control seed achieved maximum seedling rate than the ungulates seeds.  相似文献   

14.
Oceanic islands have been colonized by numerous non-native and invasive plants and animals. An understanding of the degree to which introduced rats (Rattus spp.) may be spreading or destroying seeds of invasive plants can improve our knowledge of plant-animal interactions, and assist efforts to control invasive species. Feeding trials in which fruits and seeds were offered to wild-caught rats were used to assess the effects of the most common rat, the black rat (R. rattus), on 25 of the most problematic invasive plant species in the Hawaiian Islands. Rats ate pericarps (fruit tissues) and seeds of most species, and the impacts on these plants ranged from potential dispersal of small-seeded (≤1.5 mm length) species via gut passage (e.g., Clidemia hirta, Buddleia asiatica, Ficus microcarpa, Miconia calvescens, Rubus rosifolius) to predation where <15% of the seeds survived (e.g., Bischofia javanica, Casuarina equisetifolia, Prosopis pallida, Setaria palmifolia). Rats consumed proportionally more seed mass of the smaller fruits and seeds than the larger ones, but fruit and seed size did not predict seed survival following rat interactions. Although invasive rat control efforts focus on native species protection, non-native plant species, especially those with small seeds that may pass internally through rats, also deserve rat control in order to help limit the spread of such seeds. Black rats may be facilitating the spread of many of the most problematic invasive plants through frugivory and seed dispersal in Hawaii and in other ecosystems where rats and plants have been introduced.  相似文献   

15.
Recent increases in biological invasions frequency may have important consequences on native communities. However, functional redundancy between invasive and native species could reduce non-native species effects on native ecosystems. Despite this, even small differences in functional traits between these species may still have unpredictable effects on colonized ecosystems. Invasive crayfish, as ecosystem engineers, potentially have wide and complex effects on recipient ecosystems, even when replacing a native counterpart. We used laboratory microcosms to test whether native (Astacus astacus) and invasive crayfish species (Orconectes limosus, Pacifastacus leniusculus and Procambarus clarkii) are actually functionally redundant in their effects on prey/shredder density and leaf litter breakdown. Results show that crayfish strongly influenced macroinvertebrate numbers and leaf litter breakdown and indicate that differences in direct (prey and leaf litter consumption) and indirect (prey habitat use and leaf litter breakdown) effects between crayfish species do exist. While the replacement of A. astacus by O. limosus may have induced only minor changes in freshwater ecosystems, invasions by the larger and more aggressive P. clarkii and P. leniusculus will likely have strong effects on invaded ecosystem. Overall, there seems to be no functional redundancy between these four species and outcomes of crayfish invasion will likely be species specific.  相似文献   

16.
Selected amplicon data obtained through our earlier study using ISSR and DAMD markers were utilized for determination of diversity within and among the populations of Prosopis cineraria (L.) accessions collected from different districts of Rajasthan (India). A total of 83 bands were generated from eight ISSR and five DAMD primers of which 79 were found to be polymorphic (95.18%). Nei’s gene diversity (h) ranged between 0.185 and 0.301 with overall diversity of 0.316 while Shannon’s information index (I) values recorded between 0.253 and 0.438 with an average value of 0.243. The gene flow value (1.713) and the diversity among populations (0.226) demonstrated higher genetic variation within the population. It is concluded that P. cineraria is accompanied by high genetic diversity within the population and elevated gene flow showing indications of adaptation to callous and fragile dry conditions of arid environment.  相似文献   

17.
Invasions of non-native species are modifying global biodiversity but the ecological mechanisms underlying invasion processes are still not well understood. A degree of niche separation of non-native and sympatric native species can possibly explain the success of novel species in their new environment. In this study, we quantified experimentally and in situ the environmental niche space of caridean shrimps (native Crangon crangon and Palaemon adspersus, non-native Palaemon elegans) inhabiting the northern Baltic Sea. Field studies showed that the non-native P. elegans had wider geographical range compared to native species although the level of habitat specialization was similar in both Palaemon species. There were clear differences in shrimp habitat occupancy with P. elegans inhabiting lower salinity areas and more eutrophicated habitats compared to the native species. Consequently, the non-native shrimp has occupied large areas of the northern Baltic Sea that were previously devoid of the native shrimps. Experiments demonstrated that the non-native shrimp had higher affinity to vegetated substrates compared to native species. The study suggests that the abilities of the non-native shrimp to thrive in more stressful habitats (lower salinity, higher eutrophication), that are sub-optimal for native shrimps, plausibly explain the invasion success of P. elegans.  相似文献   

18.
19.
Globodera rostochiensis and G. pallida responded similarly to hatch stimulation by potato root leachate, but proportionally more second-stage juveniles (J2s) of G. rostochiensis hatched than of G. pallida in response to picrolonic acid, sodium thiocyanate, alpha-solanine, and alpha-chaconine. Fractionation of the potato root leachate identified hatching factors with species-selective (active toward both species but stimulating greater hatch of one species than the other), -specific (active toward only one species), and -neutral (equally active toward both species) activities. In a comparison of two populations of each of the two potato cyst nematode (PCN) species, however, greater similarity in response to the individual hatching factors was observed among populations of different species produced under the same conditions than among different populations of the same PCN species. Smaller numbers of species-specific and species-selective hatching factor stimulants and hatching inhibitors than of hatching factors were resolved. In a study to determine whether the different hatching responses of the two species to the same root leachate were associated with different ratios of species-selective and species-specific hatching factors, G. rostochiensis pathotype Ro1 exhibited greater hatch than did G. pallida pathotype Pa2/3 in response to leachate from older plants (more than 38 days old), while G. pallida exhibited greater hatch in response to leachate from younger plants (less than 38 days old); the response of G. pallida pathotype Pal with respect to plant age was intermediate between the other two populations. Combined molecular exclusion-ion exchange chromatography of the root leachates from plants of different ages revealed an increase in the proportion of G. rostochiensis-specific and -selective hatching factors as the plants aged.  相似文献   

20.
To explore the traits contributing to invasion success of Eupatorium adenophorum, a noxious invasive perennial forb throughout the subtropics in Asia, Oceania, Africa, and USA, we compared the differences in ecophysiology and phenology between the invader and native E. japonicum under eight treatment combinations of two irradiances and four nitrogen additions in a two-year shadehouse experiment. The invader had significantly higher mass-based light-saturated photosynthetic rate (P max) than its native congener in all treatments, contributing to higher photosynthetic nitrogen-, phosphorus-, and energy-use efficiencies. The higher P max of the invader was associated with its higher nitrogen concentrations in the photosynthetic apparatus, which resulted from higher leaf nitrogen allocation to photosynthesis. The invader had higher specific leaf area and stomatal conductance at most of the treatments, also contributing to its higher P max. The invader was not constrained by the negative correlation between leaf lifespan and specific leaf area or P max. Leaf lifespan and total leaf area of the invader were greater than those of the native. From November to March the native congener was leafless, whereas the invader maintained a large area of leaves with relatively high P max. Biomass accumulated in these months accounted for more than 40 % of the total biomass of the invader. Our results indicate that both the ability to capture and utilize resources efficiently and the ability to use resources when they are unavailable to natives contribute to invasion success of E. adenophorum and emphasize the importance of exploring multiple, non-mutually exclusive mechanisms for invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号