首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactive oxygen species cause damage to all of the major cellular constituents, including peroxidation of lipids. Previous studies have revealed that oxidative stress, including exposure to oxidation products, affects the progression of cells through the cell division cycle. This study examined the effect of linoleic acid hydroperoxide, a lipid peroxidation product, on the yeast cell cycle. Treatment with this peroxide led to accumulation of unbudded cells in asynchronous populations, together with a budding and replication delay in synchronous ones. This observed modulation of G1 progression could be distinguished from the lethal effects of the treatment and may have been due to a checkpoint mechanism, analogous to that known to be involved in effecting cell cycle arrest in response to DNA damage. By examining several mutants sensitive to linoleic acid hydroperoxide, the YNL099c open reading frame was found to be required for the arrest. This gene (designated OCA1) encodes a putative protein tyrosine phosphatase of previously unknown function. Cells lacking OCA1 did not accumulate in G1 on treatment with linoleic acid hydroperoxide, nor did they show a budding, replication, or Start delay in synchronous cultures. Although not essential for adaptation or immediate cellular survival, OCA1 was required for growth in the presence of linoleic acid hydroperoxide, thus indicating that it may function in linking growth, stress responses, and the cell cycle. Identification of OCA1 establishes cell cycle arrest as an actively regulated response to oxidative stress and will enable further elucidation of oxidative stress-responsive signaling pathways in yeast.  相似文献   

2.
3.
Cells treated with low doses of linoleic acid hydroperoxide (LoaOOH) exhibit a cell-cycle delay that may provide a mechanism to overcome oxidative stress. Strains sensitive to LoaOOH from the genome-wide deletion collection were screened to identify deletants in which the cell-cycle delay phenotype was reduced. Forty-seven deletants were identified that were unable to mount the normal delay response, implicating the product of the deleted gene in the oxidant-mediated cell-cycle delay of the wild-type. Of these genes, SWI6 was of particular interest due to its role in cell-cycle progression through Start. The swi6 deletant strain was delayed on entry into the cell cycle in the absence of an oxidant, and oxidant addition caused no further delay. Transforming the swi6 deletant with SWI6 on a plasmid restored the G1 arrest in response to LoaOOH, indicating that Swi6p is involved in oxidant sensing leading to cell division delay. Micro-array studies identified genes whose expression in response to LoaOOH depended on SWI6. The screening identified 77 genes that were upregulated in the wild-type strain and concurrently downregulated in the swi6 deletant treated with LoaOOH. These data show that functions such as heat shock response, and glucose transport are involved in the response.  相似文献   

4.
5.
6.
细胞周期研究的新进展陆长德(中国科学院上海生物化学研究所200031)主要来自三方面的研究以及它们之间的相互交叉对于细胞周期研究的进展起了很大的作用。十多年来酵母分子遗传学的研究鉴定了许多与细胞周期的控制有关的基因,提供了许多突变株(如CDC);1988年对蛙卵成熟促进因子MPF成分的鉴定和对它生物学功能的确定使人们对细胞周期的认识有了一个飞跃;人类的致癌基因(如Tag),肿瘤抑制基因(如p53,pRB)以及其他一些疾病(如对电离辐射敏感的遗传病,AT的分子机制的研究也大大地促进了细胞周期的研究。  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Dihydrorotenone (DHR) is a natural pesticide used for farming including organic produces. We recently found that DHR induces human plasma cell apoptosis by provoking endoplasmic reticulum stress. In the present study, we found that DHR arrested human plasma cancer cells at the G0/G1 phase of the cell cycle. Mechanistical studies demonstrated that cell cycle arrest was associated with downregulated cell cycle promotors including cyclin D2, cyclin D3, cyclin‐dependent kinases (CDK4, CKD6), and phosphorylated‐Rb. DHR inhibited cyclin D2 transactivation, thus inhibiting its mRNA expression. In addition, DHR upregulated the cell cycle repressors p21 and p53. DHR also increased the phosphorylation level of p53, suggesting the upregulated transactivation function of p53, which was confirmed by the induction of p21, a substrate of activated p53. Moreover, DHR downregulated AKT and ERK phosphorylation, an incentive of cell cycle progression. Therefore, these results collectively demonstrated that DHR disrupts the cell cycle progress, which suggests that DHR is toxic to human plasma cells. Caution is thus suggested when handling with this agent.  相似文献   

16.
17.
Escherichia coli bacterioferritin comigratory protein (BCP), a putative bacterial member of the TSA/AhpC family, was characterized as a thiol peroxidase. BCP showed a thioredoxin-dependent thiol peroxidase activity. BCP preferentially reduced linoleic acid hydroperoxide rather than H(2)O(2) and t-butyl hydroperoxide with the use of thioredoxin as an in vivo immediate electron donor. The value of V(max)/K(m) of BCP for linoleic acid hydroperoxide was calculated to be 5-fold higher than that for H(2)O(2), implying that BCP has a selective capability to reduce linoleic acid hydroperoxide. Replacement of Cys-45 with serine resulted in the complete loss of thiol peroxidase activity, suggesting that BCP is a new bacterial member of TSA/AhpC family having a conserved cysteine as the primary site of catalysis. BCP exists as a monomer, and its functional Cys-45 appeared to exist as cysteine sulfenic acid. The expression level of BCP gradually elevated during exponential growth until mid-log phase growth, beyond which the expression level was decreased. BCP was induced 3-fold by the oxidative stress given by changing the growth conditions from the anaerobic to aerobic culture. Bcp null mutant grew more slowly than its wild type in aerobic culture and showed the hypersensitivity toward various oxidants such as H(2)O(2), t-butyl hydroperoxide, and linoleic acid hydroperoxide. The peroxide hypersensitivity of the null mutant could be complemented by the expression of bcp gene. Taken together, these data suggest that BCP is a new member of thioredoxin-dependent TSA/AhpC family, acting as a general hydroperoxide peroxidase.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号