首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially.  相似文献   

2.
The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially.  相似文献   

3.
The current experiment aimed to study whether interactions with lipid metabolism possibly might explain the relative increased liver weight obtained in fish fed sub-optimal methionine levels. A basal diet based on a blend of plant proteins which is low in methionine (1.6 g Met/16 g N) was compared to a methionine adequate diet (2.2 g Met/16 g N) prepared by adding dl-methionine (2.4 g/kg) to the basal diet in the expense of wheat grain. Fish oil was used as the lipid source. The diets were balanced in all nutrients except methionine. The diets were fed to Atlantic salmon (500 g BW) for a period of 3 months. Feed intake did not differ, rendering the intake of all nutrients except methionine equal. Fish fed the low methionine diet had an increased liver size relative to body weight, indicating fat deposition in the liver. Fish given the sub-optimal methionine diet showed about six times higher fatty acid synthase (FAS) activity as compared to the fish fed the adequate methionine diet, indicating a higher de novo lipogenesis. A significant rise in the liver 18:1 to 18:0 fatty acid ratios also supported storage of lipids over fatty acid oxidation. Indeed, methionine limitation resulted in significantly higher TAG concentrations in the liver. Sub-optimal dietary methionine also resulted in lower hepatic taurine concentrations and the total bile acids concentrations were reduced in faeces and tended to be reduced in plasma. Taken together, our data show that salmon fed sub-optimal methionine levels had increased relative liver weight and developed signs commonly described in the early stage of non-alcoholic fatty liver disease in rodent models (increased FAS activity, changed fatty acid ratios and TAG accumulation).  相似文献   

4.
Stearoyl-CoA desaturase-1 (SCD1) is a key enzyme in fatty acid and energy metabolism, but little is known about its nutritional regulation. Dietary methionine restriction in rats decreases hepatic Scd1 mRNA and protein, increases energy expenditure, and decreases fat-pad mass/body-weight% (FM/BW%). In humans, plasma concentrations of the methionine product, cysteine, are associated with obesity. To determine which consequences of methionine-restriction are mediated by decreased cysteine availability, we monitored obesity-related variables in 4 dietary groups for 12 weeks: control-fed (CF), methionine-restricted (MR), MR supplemented with 0.5% l-cysteine (MR+Cys) and CF+Cys rats. MR lowered weight gain and FM/BW% despite higher food intake/weight than CF, and lowered serum cysteine. Hepatic Scd1 expression was decreased, with decreased serum SCD1 activity indices (calculated from serum fatty acid profile), decreased serum insulin, leptin and triglycerides, and higher adiponectin. Cysteine supplementation (MR+Cys) essentially reversed all these phenotypes and raised serum cysteine but not methionine to CF levels. Adding extra cysteine to control diet (CF+Cys) increased serum taurine but did not affect serum cysteine, lipids, proteins, or total weight gain. FM/BW% and serum leptin were modestly decreased. Our results indicate that anti-obesity effects of MR are caused by low cysteine and that dietary sulfur amino acid composition contributes to SCD1 regulation.  相似文献   

5.
6.
Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.  相似文献   

7.
The incidence of obesity is now at epidemic proportions and has resulted in the emergence of nonalcoholic fatty liver disease (NAFLD) as a common metabolic disorder that can lead to liver injury and cirrhosis. Excess sucrose and long-chain saturated fatty acids in the diet may play a role in the development and progression of NAFLD. One factor linking sucrose and saturated fatty acids to liver damage is dysfunction of the endoplasmic reticulum (ER). Although there is currently no proven, effective therapy for NAFLD, the amino sulfonic acid taurine is protective against various metabolic disturbances, including alcohol-induced liver damage. The present study was undertaken to evaluate the therapeutic potential of taurine to serve as a preventative treatment for diet-induced NAFLD. We report that taurine significantly mitigated palmitate-mediated caspase-3 activity, cell death, ER stress, and oxidative stress in H4IIE liver cells and primary hepatocytes. In rats fed a high-sucrose diet, dietary taurine supplementation significantly reduced hepatic lipid accumulation, liver injury, inflammation, plasma triglycerides, and insulin levels. The high-sucrose diet resulted in an induction of multiple components of the unfolded protein response in the liver consistent with ER stress, which was ameliorated by taurine supplementation. Treatment of mice with the ER stress-inducing agent tunicamycin resulted in liver injury, unfolded protein response induction, and hepatic lipid accumulation that was significantly ameliorated by dietary supplementation with taurine. Our results indicate that dietary supplementation with taurine offers significant potential as a preventative treatment for NAFLD.  相似文献   

8.
N-3 fatty acids exert a potent serum lipid-lowering effect in rodents mainly by affecting hepatic fatty acid oxidation and synthesis. However, it has been observed that fish oil and docosahexaenoic acid ethyl ester do not lower serum lipid levels in apolipoprotein E (apoE)-knockout (Apoetm1Unc) mice generated by gene targeting. To test the hypothesis that apoE expression is required for n-3 fatty acid-dependent regulation of serum lipid levels and hepatic fatty acid metabolism, we examined the effect of fish oil and n-3 fatty acid ethyl esters on the activity and gene expression of hepatic enzymes involved in fatty acid oxidation and synthesis using an alternative apoE-deficient mouse model with the BALB/c genetic background (BALB/c.KOR-Apoeshl). ApoE-deficient mice were fed diets containing 9.4% palm oil, fish oil, or 5.4% palm oil and 1% EPA plus 3% DHA ethyl esters for 15 days. In contrast to the reported data on apoE-knockout mice, fish oil and n-3 fatty acid ethyl esters greatly decreased serum triacylglycerol, cholesterol, and phospholipid levels in the Apoeshl mice. The decreases were greater with fish oil than with ethyl esters. The alterations by dietary n-3 fatty acids of serum lipid levels were accompanied by parallel changes in the activity and mRNA levels of enzymes involved in hepatic fatty acid oxidation and synthesis. The reason for the discrepancy between the results of the current study and previous studies is unknown. However, our study at least indicates that a lack of apoE expression does not necessarily accompany deficits in the n-3 fatty acid-dependent regulation of serum lipid levels and hepatic fatty acid metabolism.  相似文献   

9.
The polysome fractions involved in the synthesis of the rat-liver inducible lipogenic enzymes, ATP citrate lyase and fatty acid synthetase, were identified by their binding of radioiodinated specific antibodies to enzyme. Both of these populations of specific polysomes were shown to be markedly heavier than specific polysomes involved in albumin synthesis. The quanity of antibody bound to the lipogenic enzyme-related polysomes was markedly affected by the dietary status of the animal. A dietary regimen which induced ipogenesis resulted in a tenfold increase in the hepatic activities of these enzymes found in normally fed animals. The radioactivity bound to hepatic polysomes of induced rats was likewise greater than tenfole higher, presumably reflecting an increase in the number of polysomes active in enzyme synthesis. The fasting state resulted in lower hepatic enzyme activity than normal and correspondingly less binding of ATP citrate lyase and fatty acid synthetase antibodies to the heavy polysomes of the sucrose gradient.  相似文献   

10.
11.
Abstract— —High circulating levels of l -methionine produced by inclusion in the diet or parenteral injection of the amino acid caused alterations in the free amino acid pattern of liver and brain tissues. Acute effects following l -methionine injection were more pronounced than those following long term feeding where adaptation played a role. The net effect following parenteral injection was to increase the total free amino acids of liver while decreasing those of brain. Individually, hepatic levels of aspartic acid, threonine, serine, glutamine, glutamic acid, glycine, and alanine were depressed while levels of taurine, cystathionine, methionine, lysine, and ornithine were markedly elevated. Brain levels of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, and γ-aminobutyric acid were markedly depressed and increased levels of cystathionine, methionine, lysine, and glutamine were observed. A generalized aminoaciduria occurred shortly after excessive methionine intake. Disruption of the free amino acid pools was of two kinds. The first depended on the continued presence of excess l -methionine, the second did not.  相似文献   

12.
13.
Insertion of a growth hormone (GH) transgene in coho salmon results in accelerated growth, and increased feeding and metabolic rates. Whether other physiological systems within the fish are adjusted to this accelerated growth has not been well explored. We examined the effects of a GH transgene and feeding level on the antioxidant glutathione and its associated enzymes in various tissues of coho salmon. When transgenic and control salmon were fed to satiation, transgenic fish had increased tissue glutathione, increased hepatic glutathione reductase activity, decreased hepatic activity of the glutathione synthesis enzyme γ-glutamylcysteine synthetase, and increased intestinal activity of the glutathione catabolic enzyme γ-glutamyltranspeptidase. However, these differences were mostly abolished by ration restriction and fasting, indicating that upregulation of the glutathione antioxidant system was due to accelerated growth, and not to intrinsic effects of the transgene. Increased food intake and ability to digest potential dietary glutathione, and not increased activity of glutathione synthesis enzymes, likely contributed to the higher levels of glutathione in transgenic fish. Components of the glutathione antioxidant system are likely upregulated to combat potentially higher reactive oxygen species production from increased metabolic rates in GH transgenic salmon.  相似文献   

14.
Elongation of very long chain fatty acids (ELOVL)5 is one of seven mammalian fatty acid condensing enzymes involved in microsomal fatty acid elongation. To determine the in vivo substrates and function of ELOVL5, we generated Elovl5(-/-) mice. Studies using liver microsomal protein from wild-type and knockout mice demonstrated that the elongation of gamma-linolenic (C18:3, n-6) to dihomo-gamma-linolenic (C20:3, n-6) and stearidonic (C18:4, n-3) to omega3-arachidonic acid (C20:4, n-3) required ELOVL5 activity. Tissues of Elovl5(-/-) mice accumulated the C18 substrates of ELOVL5 and the levels of the downstream products, arachidonic acid (C20:4, n-6) and docosahexaenoic acid (DHA, C22:6, n-3), were decreased. A consequence of decreased cellular arachidonic acid and DHA concentrations was the activation of sterol regulatory element-binding protein (SREBP)-1c and its target genes involved in fatty acid and triglyceride synthesis, which culminated in the development of hepatic steatosis in Elovl5(-/-) mice. The molecular and metabolic changes in fatty acid metabolism in Elovl5(-/-) mice were reversed by dietary supplementation with arachidonic acid and DHA. These studies demonstrate that reduced ELOVL5 activity leads to hepatic steatosis, and endogenously synthesized PUFAs are key regulators of SREBP-1c activation and fatty acid synthesis in livers of mice.  相似文献   

15.
The administration of alcohol to rats fed a protein-restricted diet results in significant changes in the hepatic content of four enzymes of methionine metabolism. The levels of s-adenosylmethionine synthetase, cystathionine synthase, and betaine-homocysteine methyltransferase increase while the level of methyltetrahydrofolate-homocysteine methyltransferase decreases. These changes represent a reversal of the normal adaptive response to protein-restriction. The resultant impairment in methionine conservation could explain the alcohol-induced increase in the dietary lipotrope requirement.  相似文献   

16.
The hyperhomocysteinemia induced by a dietary addition of 1% methionine was significantly suppressed by the concurrent addition of 1% glycine or 1.4% serine to the same degree. The methionine-induced increase in the hepatic concentration of methionine metabolites was significantly suppressed by glycine and serine, but the hepatic cystathionine beta-synthase activity was not enhanced by these amino acids. When the methionine-supplemented diet was changed to the methionine plus glycine or serine diet, the plasma homocysteine concentration rapidly decreased during and after the first day. The hyperhomocysteinemia induced by an intraperitoneal injection with methionine was also suppressed by concurrent injection with glycine or serine, although the effect of serine was significantly greater than that of glycine. These results indicate that glycine and serine were effective for suppressing methionine-induced hyperhomocysteinemia: serine and its precursor glycine are considered to have elicited their effects mainly by stimulating cystathionine synthesis by supplying serine, another substrate for cystathionine synthesis.  相似文献   

17.
The integration of metabolic signals required for the regulation of hepatic lipid homeostasis is complex. Previously, we showed that mice lacking expression of the mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) have increased fatty acid oxidation and are protected from the development of hepatic steatosis. Here, we show that leptin receptor-deficient (db/db) mice lacking MKP-1 are also resistant to the development of hepatic steatosis. Microarray analyses of livers from db/db mice lacking MKP-1 showed suppression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. We identified the fat-specific protein 27 (Fsp27), which promotes PPARγ-mediated hepatic steatosis, as repressed in livers of both db/db and high fat diet-fed mice lacking MKP-1. Hepatocytes from MKP-1-deficient mice exhibited reduced PPARγ-induced lipid droplet formation. Mechanistically, loss of MKP-1 inhibited PPARγ function by increasing MAPK-dependent phosphorylation on PPARγ at its inhibitory residue of serine 112. These results demonstrate that in addition to inhibiting hepatic fatty acid oxidation, MKP-1 promotes hepatic lipogenic gene expression through PPARγ. Hence, MKP-1 plays an important role in MAPK-mediated control of hepatic lipid homeostasis.  相似文献   

18.
19.
Taurine has been considered as an essential nutrient for many aquaculture species. While dietary taurine supplementation is highly recommended, novelty studies on taurine metabolism in fish are needed. The present study aimed to provide insight into the molecular mechanisms involved in multiple metabolome changes in Nile tilapia (Oreochromis niloticus) by studying plasma metabolic profile changes in response to graded levels of dietary taurine supplementation. The analysis used proton nuclear magnetic resonance-based metabolomics. Four groups of tilapias were fed with four diets supplemented with 0.0, 0.4, 0.8 and 1.2% taurine for 84 days. Fish plasma was sampled at multiple time points to provide an accurate snapshot of specific metabolic profiles during growth. Under the effect of taurine supplementation, 21 and 12 metabolites in tilapia plasma shown significant changes in terms of time-dependence and diet-dependence, respectively. These metabolic changes in tilapia plasma were mainly associated with energy and amino acid metabolism, lipids, nucleotides and protein metabolism. The results indicate that 0.8% taurine supplementation could significantly improve the carbohydrate synthesis, protein digestion and absorption, and fat deposition of tilapia and thereby promoted growth and development of tilapia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号