首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to assess the influence of three soil DNA extraction procedures, namely the International Organization for Standardization (ISO‐11063, GnS‐GII and modified ISO procedure (ISOm), on the taxonomic diversity and composition of soil bacterial and fungal communities. The efficacy of each soil DNA extraction method was assessed on five soils, differing in their physico‐chemical characteristics and land use. A meta‐barcoded pyrosequencing approach targeting 16S and 18S rRNA genes was applied to characterize soil microbial communities. We first observed that the GnS‐GII introduced some heterogeneity in bacterial composition between replicates. Then, although no major difference was observed between extraction procedures for soil bacterial diversity, we saw that the number of fungal genera could be underestimated by the ISO‐11063. In particular, this procedure underestimated the detection in several soils of the genera Cryptococcus, Pseudallescheria, Hypocrea and Plectosphaerella, which are of ecological interest. Based on these results, we recommend using the ISOm method for studies focusing on both the bacterial and fungal communities. Indeed, the ISOm procedure provides a better evaluation of bacterial and fungal communities and is limited to the modification of the mechanical lysis step of the existing ISO‐11063 standard.  相似文献   

2.
3.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

4.
Extracting DNA directly from micro-organisms living in soil is a crucial step for the molecular analysis of soil microbial communities. However, the use of a plethora of different soil DNA extraction protocols, each with its own bias, makes accurate data comparison difficult. To overcome this problem, a method for soil DNA extraction was proposed to the International Organization for Standardization (ISO) in 2006. This method was evaluated by 13 independent European laboratories actively participating in national and international ring tests. The reproducibility of the standardized method for molecular analyses was evaluated by comparing the amount of DNA extracted, as well as the abundance and genetic structure of the total bacterial community in the DNA extracted from 12 different soils by the 13 laboratories. High quality DNA was successfully extracted from all 12 soils, despite different physical and chemical characteristics and a range of origins from arable soils, through forests to industrial sites. Quantification of the 16S rRNA gene abundances by real time PCR and analysis of the total bacterial community structure by automated ribosomal intergenic spacer analysis (A-RISA) showed acceptable to good levels of reproducibility. Based on the results of both ring-tests, the method was unanimously approved by the ISO as an international standard method and the normative protocol will now be disseminated within the scientific community. Standardization of a soil DNA extraction method will improve data comparison, facilitating our understanding of soil microbial diversity and soil quality monitoring.  相似文献   

5.
Soil microorganisms play a critical role in the biosphere, and the influence of cropland fertilization on the evolution of soil as a living entity is being actively documented. In this study, we used a shotgun metagenomics approach to globally expose the effects of 50-year N and P fertilization of wheat on soil microbial community structure and function, and their potential involvement in overall N cycling. Nitrogen (N) fertilization increased alpha diversity in archaea and fungi while reducing it in bacteria. Beta diversity of archaea, bacteria and fungi, as well as soil function, were also mainly driven by N fertilization. The abundance of archaea was negatively impacted by N fertilization while bacterial and fungal abundance was increased. The responses of N metabolism-related genes to fertilization differed in archaea, bacteria and fungi. All archaeal N metabolic processes were decreased by N fertilization, while denitrification, assimilatory nitrate reduction and organic-N metabolism were highly increased by N fertilization in bacteria. Nitrate assimilation was the main contribution of fungi to N cycling. Thaumarchaeota and Halobacteria in archaea; Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria in bacteria; and Sordariomycetes in fungi participated dominantly and widely in soil N metabolic processes.  相似文献   

6.
为了分析内蒙古草原不同植物物种对土壤微生物群落的影响, 采用实时荧光定量PCR (real-time PCR)以及末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)等分子生物学技术, 测定了退化-恢复样地上几种典型植物的根际土壤和非根际土壤中细菌和真菌的数量及群落结构。结果表明, 不同植物物种对根际和非根际细菌及根际真菌数量均有显著影响。根际土壤中的细菌和真菌数量普遍高于非根际土壤, 尤其以真菌更为明显。对T-RFLP数据进行多响应置换过程(multi-response permutation procedures, MRPP)分析和主成分分析(principal component analysis, PCA), 结果表明, 大多数物种的根际细菌及真菌的群落结构与非根际有明显差异, 并且所有物种的真菌群落可以按根际和非根际明显分为两大类群。此外, 细菌和真菌群落结构在一定程度上存在按物种聚类的现象, 以细菌较为明显。这些结果揭示了不同植物对土壤微生物群落的影响特征, 对理解内蒙古草原地区退化及恢复过程中植被演替引起的土壤性质和功能的变化有一定的帮助。  相似文献   

7.
Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.  相似文献   

8.
To study the influence of genetically modified microorganisms (GMM) on the number and structure of the soil microbial community, we introduced the genetically modified strain of Sinorhizobium meliloti into soil under controlled laboratory conditions. The analysis of the dynamics of soil microorganisms of all the main groups (archaea, bacteria, fungi) using the PCR with real-time detection and the analysis of the species structure of all the indicated components using T-RFLP were carried out for a month. The results of the quantitative PCR demonstrated that none of the components of the soil microbial community was appreciably influenced by the GMM introduced. The number of GMM decreased over a month more than 300-fold. The analysis of the dynamics of the eubacterial, archaeal, and fungal communities using T-RFLP did not detect fundamental changes in their structure.  相似文献   

9.
Here we describe a DNA extraction method that is based on a simple, rapid polyvinylpolypyrrolidone–calcium chloride precipitation to release microorganisms from the soil combined with lysozyme–proteinase–SDS lysis of the microbial community. The extracted DNA is of high quality and allows direct detection of specific genes by the polymerase chain reaction (PCR) as well as cloning of indigenous microbial DNA. This method facilitates the extraction of 36 500-mg soil samples simultaneously in a 2-h period by one person. The procedure is safe, inexpensive, and does not require specialized equipment or generate hazardous wastes.  相似文献   

10.
内蒙草原不同植物功能群及物种对土壤微生物组成的影响   总被引:1,自引:0,他引:1  
为了分析不同植物群落组成对内蒙古典型草原土壤微生物群落组成的影响,本研究利用植物功能群剔除处理实验平台,采用荧光定量PCR(real-timePCR)和自动核糖体间隔区基因分析(automated ribosomal intergenic spacer analysis,ARISA)技术,对不同植物功能群组成的非根际土壤和常见物种的根际土壤中细菌和真菌的数量及群落结构进行了分析。结果表明,在非根际土壤中,不同植物功能群组成对细菌数量有显著影响,而对真菌数量及细菌和真菌的群落结构影响不明显;在根际土壤中,不同植物物种对细菌、真菌的数量都有显著影响。此外,聚类分析表明,不同物种的根际土中细菌和真菌的群落结构也有所不同,尤其以细菌的群落结构变化较为明显。研究结果表明不同植物物种可以通过根系影响土壤微生物群落组成。  相似文献   

11.
高程  郭良栋 《生物多样性》2022,30(10):22429-23168
微生物主要包括细菌、真菌、古菌、病毒等类群, 是地球上出现时间最早、分布最广泛、个体数量最多, 以及物种和基因多样性十分丰富的生物类群。为了适应各种生境, 微生物衍生出腐生、寄生、共生等多样的生存策略, 在生物地球化学循环、生态系统演替与稳定性、环境修复以及人类健康等方面发挥着重要作用。传统的微生物监测方法限制了我们对微生物多样性的认知; 但是, 近年来高通量测序技术和生物信息学的发展极大推动了微生物多样性的研究进展。本文概述了近年来在微生物多样性分布格局与维持、群落构建以及功能属性多样性的最新进展; 总结分析了细菌、古菌、真菌的多样性纬度分布格局及其驱动因子, 选择、扩散、成种、漂变等过程对细菌、古菌、真菌的群落构建的贡献, 以及细菌和真菌的形态、生理生化、生长繁殖、扩散、基因组等功能性状的多样性; 提出了未来微生物多样性研究的重要领域: 环境宏真菌组研究, 微生物多样性与生态系统多功能性的关系研究, 以及微生物互作网络的生态功能研究。  相似文献   

12.
Soils support an enormous microbial diversity, but the ecological drivers of this diversity are poorly understood. Interactions between the roots of individual grass species and the arbuscular mycorrhizal (AM) fungi and bacteria in their rhizoplane were studied in a grazed, unimproved upland pasture. Individual root fragments were isolated from soil cores, DNA extracted and used to identify plant species and assess rhizoplane bacterial and AM fungal assemblages, by amplifying part of the small-subunit ribosomal RNA gene, followed by terminal restriction fragment length polymorphism analysis. For the first time we showed that AM fungal and bacterial assemblages are related in situ and that this relationship occurred at the community level. Principal coordinate analyses of the data show that the AM fungi were a major factor determining the bacterial assemblage on grass roots. We also report a strong influence of the composition of the plant community on AM fungal assemblage. The bacterial assemblage was also influenced by soil pH and was spatially structured, whereas AM fungi were influenced neither by the bacteria nor by soil pH. Our study shows that linkages between plant roots and their microbial communities exist in a complex web of interactions that act at individual and at community levels, with AM fungi influencing the bacterial assemblage, but not the other way round.  相似文献   

13.
The long-term impacts of Cu- and Zn-rich sewage sludge additions on the structure of the microbial community in a field under pasture were investigated using a combination of multiplex-terminal restriction fragment length polymorphism (M-TRFLP) and T-RFLP profiling approaches. Changes in the community structure of bacteria, fungi, archaea and actinobacteria were observed in soils that had previously received Cu- (50-200 mg kg(-1) soil) and Zn- (150-450 mg kg(-1) soil) rich sewage sludge additions. Changes in the structure of all microbial groups measured were observed at Cu and Zn rates below the current EU guidelines (135 mg kg(-1) Cu and 300 mg kg(-1) Zn). The response of the fungal community, and to a lesser extent the bacterial and archaeal community, to Cu was dose dependent. The fungal community also showed a dose-dependent response to Zn, which was not observed in the other microbial groups assessed. Redundancy analysis demonstrated that individual terminal restriction fragments responded to both Cu and Zn and these may have potential as genetic markers of long-term metal effects in soil.  相似文献   

14.
土壤古菌和真菌在温室生态系统是仅次于细菌的微生物,具有类似于细菌的重要生态功能。通过构建古菌16S rRNA和真菌18S rRNA基因克隆文库,分析温室黄瓜近根土壤古菌和真菌群落结构组成,为开发利用温室这一特殊的生态环境中丰富的微生物资源以及理解微生物与植物间的互作提供参考依据。采用研磨-冻融-溶菌酶-蛋白酶K-SDS热处理以及CTAB处理等理化方法,提取和纯化微生物总DNA,构建古菌16S rRNA和真菌18S rRNA基因克隆文库。利用DOTUR软件将古菌和真菌序列按照相似性97%的标准分成若干个可操作分类单元 (OTUs)。土壤古菌克隆文库主要包括泉古菌门和未分类的古菌两大类,并有少部分广域古菌类群,所有泉古菌均属于热变形菌纲,共45个OTUs;真菌克隆文库包括真菌门的大多数亚门真菌,共24个OTUs,未发现担子菌亚门真菌。古菌多样性比较丰富,且发现少量的广域古菌 (甲烷菌),这一情况可能与温室长期高温高湿,高有机质含量,土壤处于缺氧环境有关;土壤真菌的优势种群为子囊菌,占到土壤真菌的80%以上,这可能与绝大多数植物真菌性病害属于土传病害,通过菌丝体、菌核或子囊壳在土壤病残体中越冬有一定的关系。  相似文献   

15.
朱怡  吴永波  安玉亭 《生态学报》2022,42(17):7137-7146
麋鹿的采食、躺卧和践踏行为均会对栖息地土壤环境造成影响,进而影响土壤微生物群落结构。利用高通量测序技术,分析江苏大丰麋鹿国家级自然保护区禁牧点和补饲点土壤细菌和真菌群落结构差异,并结合土壤理化性质探究禁牧对土壤微生物群落结构的影响。结果表明细菌群落的优势菌门为变形菌门,真菌群落的优势菌门为子囊菌门。禁牧改变了土壤微生物群落结构,在门水平上提高了变形菌门、放线菌门和担子菌门的相对丰度,降低了绿弯菌门、厚壁菌门和子囊菌门的相对丰度,禁牧点与补饲点土壤微生物群落多样性的相似性较低。冗余分析中,细菌受土壤环境因子的影响大于真菌,其中土壤pH是影响细菌和真菌群落最大的土壤环境因子。研究揭示了禁牧对土壤微生物群落结构的影响,为保护区制定麋鹿生境恢复方案提供参考。  相似文献   

16.
毛竹种植对土壤细菌和真菌群落结构及多样性的影响   总被引:2,自引:0,他引:2  
为揭示天然林改为毛竹林过程中土壤微生物变化规律,在浙江省湖州市安吉县和长兴县两地选择不同种植历史的粗放经营毛竹林,分层采集0~20和20~40 cm的混合土壤样品,应用PCR-DGGE技术分析土壤细菌和真菌群落结构及多样性变化.结果表明: 在马尾松林改种毛竹林或毛竹林入侵杂灌阔叶林形成毛竹纯林过程中,土壤细菌和真菌的群落结构均发生明显变化,且细菌结构对毛竹种植的响应更敏感;随着毛竹生长时间的延长,表层土壤细菌群落表现出抵抗干扰、最后向改种毛竹之前状态恢复的趋势.毛竹种植时间、样地和土层均对土壤细菌和真菌多样性产生显著影响,其中样地和土层的影响明显大于种植时间.土壤性质和细菌、真菌结构的冗余分析结果表明,不同地点、不同土层驱动土壤微生物结构随时间变化的主要因子没有一致规律,且第1、2轴对样地变化的解释率大多低于65.0%,说明除本研究分析的5个土壤化学指标外,可能还有其他土壤理化性质共同驱动微生物结构的变化.  相似文献   

17.
枯草芽胞杆菌菌肥对有机冬瓜根区土壤微生态的影响   总被引:4,自引:0,他引:4  
【背景】微生物肥料已广泛应用于我国有机作物的种植,其对有机种植土壤微生态的影响尚需科学评测。【目的】高通量测序技术可用于精确分析土壤微生物群落,从细菌、真菌群落结构和多样性的角度阐释枯草芽胞杆菌菌肥对有机农田根区土壤微生物群落的影响。【方法】在有机农田轮作种植条件下,施用枯草芽胞杆菌菌肥后提取冬瓜根区土壤基因组DNA,通过PCR扩增建立文库,利用IlluminaMiSeq高通量测序技术,并结合相关生物信息学方法分析土壤细菌16SrRNA基因V3-V4区和真菌ITS1区的多样性指数及群落结构;测定根区土壤化学性质及酶活性,分析有机冬瓜果实品质,并作相关分析。【结果】从6个有机冬瓜根区土壤样本中获得14199个细菌操作分类单元(OTU)和3378个真菌OTU,细菌和真菌文库测序覆盖率分别在98%、99%以上。枯草芽胞杆菌菌肥会在一定程度上提高土壤细菌种群多样性而降低真菌种群多样性,丰富了细菌群落结构,但显著降低了真菌群落丰富度(P0.05);并减少了根区土壤特有细菌和真菌物种。变形菌门、厚壁菌门和放线菌门是优势细菌,子囊菌门是优势真菌;枯草芽胞杆菌菌肥会提高绿弯菌门和子囊菌门的相对丰度,比例分别为46.23%、10.01%;降低变形菌门和担子菌门的相对丰度,比例分别为11.14%、74.72%。枯草芽胞杆菌菌肥显著降低了土壤pH,显著提高了有机冬瓜果实总氨基酸、可溶性固形物等营养成分含量(P0.05)。【结论】施用枯草芽胞杆菌菌肥改变有机冬瓜根区土壤细菌和真菌的丰富度和多样性,降低了土壤pH,提高了有机冬瓜果实品质。  相似文献   

18.
The presence of specialized microbial associations between populations of chemoautotrophic bacteria and archaea with ascomycetous fungi was observed inside stalactite-shaped mineral formations in a highly acidic cave environment. Metagenomic, chemical and electron microscopy analyses were used to investigate the relevance of these microbial ecosystems in the formation of stalactites. Ferric hydroxide produced by acidophilic bacteria and archaea was shown to be deposited onto fungal hyphae, resulting in complex mineralized stalactite-shaped structures. Thus, both archaeal-bacterial and fungal members of the ecosystem were shown to play an active role in the formation of stalactites.  相似文献   

19.
DNA recovery from soils of diverse composition.   总被引:95,自引:1,他引:95       下载免费PDF全文
A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.  相似文献   

20.
Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side‐by‐side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipid analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号