首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Moles have modified thoracic limbs with hypertrophied pectoral girdle muscles that allow them to apply remarkably high lateral out‐forces during the power stroke when burrowing. To further understand the high force capabilities of mole forelimbs, architectural properties of the thoracic limb muscles were quantified in the Eastern mole (Scalopus aquaticus). Architectural properties measured included muscle mass, moment arm, belly length, fascicle length, and pennation angle, and these were used to provide estimates of maximum isometric force, joint torque, and power. Measurements of muscle moment arms and limb lever lengths were additionally used to analyze the out‐force contributions of the major pectoral girdle muscles. Most muscles have relatively long fascicles and little‐to‐no pennation. The humeral abductor/rotators as a functional group are massive and are capable of relatively high force, power, and joint torque. Of this group, the bipennate m. teres major is the most massive and has the capacity to produce the highest force and joint torque to abduct and axially rotate the humerus. In general, the distal limb muscles are relatively small, but have the capacity for high force and mechanical work by fascicle shortening. The muscle architectural properties of the elbow extensors (e.g., m. triceps brachii) and carpal flexors (e.g., m. palmaris longus) are consistent with the function of these muscles to augment lateral out‐force application. The humeral abductor/rotators m. latissimus dorsi, m. teres major, m. pectoralis, and m. subscapularis are calculated to contribute 13.9 N to out‐force during the power stroke, and this force is applied in a ‘frontal’ plane causing abduction of the humerus about the sternoclavicular joint. Moles have several specializations of their digging apparatus that greatly enhance the application of out‐force, and these morphological features suggest convergence on limb form and burrowing function between New and Old World moles. J. Morphol. 274:1277–1287, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior crural and antagonistic peroneal muscles, were investigated. All muscles were either passive or maximally active. Peroneal muscles were kept at a constant muscle tendon complex length. Either EDL or all anterior crural muscles were lengthened so that effects of lengthening of TA + EHL could be analyzed. For both lengthening conditions, a significant difference in proximally and distally measured EDL passive and active forces, indicative of epimuscular myofascial force transmission, was present. However, added lengthening of TA + EHL significantly affected the magnitude of the active and passive load exerted on EDL. For the active condition, the direction of the epimuscular load on EDL was affected; at all muscle lengths a proximally directed load was exerted on EDL, which decreased at higher muscle lengths. Lengthening of anterior crural muscles caused a 26% decrease in peroneal active force.

Extramuscular myofascial connections are thought to be the major contributor to the EDL proximo-distal active force difference. For antagonistic peroneal complex, the added distal lengthening of a synergistic muscle increases the effects of extramuscular myofascial force transmission.  相似文献   


4.
Force transmission via pathways other than myotendinous ones, is referred to as myofascial force transmission. The present study shows that myofascial force transmission occurs not only between adjacent synergistic muscles or antagonistic muscles in adjacent compartments, but also between most distant antagonistic muscles within a segment. Tibialis anterior (TA), extensor hallucis longus (EHL), extensor digitorum longus (EDL), peroneal muscles (PER) and triceps surae muscles of 7 male anaesthetised Wistar rats were attached to force transducers, while connective tissues at the muscle bellies were left fully intact. The TA + EHL-complex was made to exerted force at different lengths, but the other muscles were held at a constant muscle–tendon complex length. With increasing TA + EHL-complex length, active force of maximally activated EDL, PER and triceps surae decreased by maximally 5%, 32% and 16%, respectively. These decreases are for the largest part explained by myofascial force transmission. Particularly the force decrease in triceps surae muscles is remarkable, because these muscles are located furthest away from the TA + EHL-complex. It is concluded that substantial extramuscular myofascial force transmission occurs between antagonistic muscles even if the length of the path between them is considerable.  相似文献   

5.
Abstract

The current paper aims at assessing the sensitivity of muscle and intervertebral disc force computations against potential errors in modeling muscle attachment sites. We perturbed each attachment location in a complete and coherent musculoskeletal model of the human spine and quantified the changes in muscle and disc forces during standing upright, flexion, lateral bending, and axial rotation of the trunk. Although the majority of the muscles caused minor changes (less than 5%) in the disc forces, certain muscle groups, for example, quadratus lumborum, altered the shear and compressive forces as high as 353% and 17%, respectively. Furthermore, percent changes were higher in the shear forces than in the compressive forces. Our analyses identified certain muscles in the rib cage (intercostales interni and intercostales externi) and lumbar spine (quadratus lumborum and longissimus thoracis) as being more influential for computing muscle and disc forces. Furthermore, the disc forces at the L4/L5 joint were the most sensitive against muscle attachment sites, followed by T6/T7 and T12/L1 joints. Presented findings suggest that modeling muscle attachment sites based on solely anatomical illustrations might lead to erroneous evaluation of internal forces and promote using anatomical datasets where these locations were accurately measured. When developing a personalized model of the spine, certain care should also be paid especially for the muscles indicated in this work.  相似文献   

6.
Ungulates generally have large masseter and pterygoid muscles and a necessarily large angular process provides attachment surface on the mandible. The temporalis muscle tends to be small. It has been suggested that this is an adaptation for enhanced control of the lower jaw and reduction of forces at the jaw joint. I suggest an additional reason: because of the geometry of the jaw, the length of that segment of the lower jaw that spans the distance from the jaw joint to the most posterior tooth is significantly reduced when the masseler and pterygoid are the dominant muscles; this region is necessarily much longer when the temporalis is large.  相似文献   

7.
Determination of muscle forces in individual muscles is often essential to assess optimal performance of human motion. Inverse dynamic methods based on the kinematics of the given motion and on the use of optimisation approach are the most widely used for muscle force estimation. The aim of this study was to estimate how the choice of muscle model influences predicted muscle forces. Huxley's (1957, Prog Biophys Biop Chem. 7: 255–318) and Hill's (1938, Proc R Soc B. 126: 136–195) muscle models were used for determination of muscle forces of two antagonistic muscles of the lower extremity during cycling. Huxley's model is a complex model that couples biochemical and physical processes with the microstructure of the muscle whereas the Hill's model is a phenomenological model. Muscle forces predicted by both models are within the same range. Huxley's model predicts more realistic patterns of muscle activation but it is computationally more demanding. Therefore, if the overall muscle forces are to be assessed, it is reasonable to use a simpler implementation based on Hill's model.  相似文献   

8.
Anatomical studies have shown structural continuity between the lumbopelvic region and the lower limb. The present study aimed to verify how simultaneous changes on knee/hip positions modify the ankle’s resting position and passive torque. Thirty-seven subjects underwent an isokinetic assessment of ankle passive torque. The relationship between the absolute values of ankle passive resistance torque and the ankle angular position was used to calculate the dependent variables: ankle resting position (position in which the passive resistance torque is zero); and ankle passive torque at 0° (torque at the neutral position of the ankle in the sagittal plane). These measures were carried out under three test conditions: 0° at knee and 0° at hip (0°/0°); 90° at knee and 90° at hip (90°/90°); and, 135° at knee and 120° at hip (135°/120°). The results demonstrated that the ankle resting position shifted towards dorsiflexion when knee/hip position changed from 0°/0° to 90°/90° and shifted towards plantar flexion when knee/hip position changed from 90°/90° to 135°/120°, achieving values close to the ones at the position 0°/0°. Similarly, passive torque reduced when knee/hip position changed from 0°/0° to 90°/90°, but it increased when knee/hip position changed from 90°/90° to 135°/120°. The unexpected changes observed in ankle passive torque and resting position due to changes in knee and hip from 90°/90° to 135°/120°, cannot be explained exclusively by forces related to tissues crossing the knee and ankle. This result supports the existence of myofascial force transmission among lower limb joints.  相似文献   

9.
Franklin Fuchs  Charles Fox 《BBA》1982,679(1):110-115
A simple double-isotope procedure has been developed for making simultaneous measurements of bound Ca2+ and relative force in glycerinated rabbit psoas bundles containing two fibers. With this preparation it is possible to study Ca2+-troponin interactions coincident with MgATP-induced force development. Over the free [Ca2+] range 6 · 10?8–1.2 · 10?5 M the bound Ca2+ varied from 0.25 to 1.65 μmol/g protein. The free [Ca2+] at half-maximal Ca2+ saturation was 2 · 10?7 M while that a half-maximal force was 5 · 10?7 M. Half-maximal Ca2+ saturation was associated with 20% maximal force. The force-[Ca2+] saturation curve showed a steep rise in slope at greater than half saturation. The observed relationship was consistent with a model in which multiple occupancy of troponin Ca2+-binding sites is essential for initiation of cross-bridge cycling.  相似文献   

10.
The arrangement of muscles and tendons has been studied in detail by anatomists, surgeons and biomechanists for over a century, and the energetics and mechanics of muscle contraction for almost as long. Investigation of how muscles function during locomotion and the relative length change in muscle fibres and the associated elastic tendon has, however, been more challenging. In recent years, novel in vivo measurement methods such as ultrasound and sonomicrometry have contributed to our understanding of the dynamics of the muscle tendon unit during locomotion. Here, we examine both published and new data to explore how muscles are arranged to deliver the wide repertoire of locomotor function and the trade-offs between performance and economy that result.  相似文献   

11.
12.
doi: 10.1111/j.1741‐2358.2011.00477.x
Telescopic crowns: extra‐oral and intra‐oral retention force measurement –in vitro/in vivo correlation Objective: This study deals with the determination of the retentive forces of telescopic crowns measured extra‐ and intra‐orally and the correlation of these values. Background: The telescopic denture is a well‐documented solution for prosthetic rehabilitation for a partially edentulous jaw. Acceptable retention forces are needed to avoid inadvertent removal of the denture during movement of the jaws. Recent literature suggests 3–7 N per attachment to be acceptable. These values are only supported by in vitro studies. In vivo data are scarce, and a correlation of the in vitro and in vivo values is lacking. Material and Methods: Twenty‐five combined fixed‐removable prostheses with a total of 72 double crowns were used for extra‐oral retention force measurement prior to cementation (in vitro). The intra‐oral measurement was performed at 72 defined measuring points of the dentures 4–6 weeks after prosthetic rehabilitation (in vivo). A specifically designed measuring device was used. Results: The rank correlation showed that the in vitro and in vivo values correlate with each other (Spearman’s ρ = 0.5052). Additionally, it was found that the median values measured before (1.97N) insertion of the dentures were significantly lower than after (4.70N) insertion (Mann–Whitney test, p ≤ 0.0001). Conclusion: The retention forces measured before and after insertion of the denture correlate with each other although their dimension is significantly higher after insertion. The reason for this behaviour might be some tilting during removal. Nevertheless, the correlation allows a prediction of the clinically relevant forces by a measurement of the extra‐orally measured retentive values.  相似文献   

13.
Volumetric muscle loss injuries (VML) are challenging to treat because of the variability in wound location. Regenerative medicine offers promising alternative treatments, but there is little understanding of the correlation between magnitude of VML injuries and corresponding functional deficits that must be addressed. There is a need for a tool that can elucidate the relationship between VML injury and force loss, as well as the impact on specific mechanisms responsible for force production. The purpose of this study was to develop a novel coupled framework of in situ and in silico methods to more precisely understand the relationship between injury location and force production deficits. We created a three-dimensional finite-element model of the pennate latissimus dorsi (LD) muscle in the rat and validated the model experimentally. We found that the model’s prediction (2.6 N/g Model I, 2.1 N/g Model V) compared favorably to in situ testing of isometric force generation of the injured rat LD muscle (2.8 ± 0.3 N/g Experimental I, 2.0 ± 0.2 N/g Experimental V). Further model analysis revealed that the contribution from lateral and longitudinal force transmission to the total force varied with injury location and led to a greater understanding of the mechanisms responsible for VML-related force deficits. In the future, the coupled computational and experimental framework can be used to inform development of preclinical VML injury models that better recapitulate the spectrum of VML injuries observed in affected patients, and the mechanistic insight can accelerate the creation of improved regenerative therapeutics for VML injuries.  相似文献   

14.
Summary Investigations on relationships between biochemical polymorphism and variation in quantitative traits are of interest from the perspectives of both theoretical quantitative genetics and practical animal breeding. This subject was studied by using racing performance records of more than 25,000 horses of the Swedish Trotter breed born in the period 1970–1979. For all horses data on six blood group and nine electrophoretic loci were available. Two different performance traits were investigated. A racing performance index value was calculated for all individuals which had started in at least five races. Horses which had not started at all or less than five times were pooled in an unstarted class and the proportion of started horses was analysed as an all-or-none trait. The relationships between the marker genes and these two performance traits were analysed statistically by using linear models. Analysis within sires revealed a very highly significant association between variation at the serum esterase locus (Es) and the proportion of started horses. In addition, four weakly significant associations were found. A striking feature of the highly significant association involving the esterase locus was that the effect of different alleles showed a good fit to an additive genetic model as the value of each heterozygous type was intermediate to the two corresponding homozygotes. In addition to the association tests, the possibility of genetic linkage between marker genes and genes affecting performance was tested as well as the influence on performance of heterozygosity at marker loci. No significant relationships were revealed in these latter tests.  相似文献   

15.
16.
A group of 32 healthy men (M) divided into three different age groups, i.e. M20 years [mean 21 (SD 1); n = 12], M40 [mean 40 (SD 2); n = 10] and M70 [mean 71 (SD 5); n = 10] volunteered as subjects for examination of maximal and explosive force production of leg extensor muscles in both isometric and dynamic actions (squat jump, SJ and counter movement jump, CMJ, and standing long-jump, SLJ). The balance test was performed on a force platform in both isometric and dynamic actions. Maximal bilateral isometric force value in M70 was lower (P < 0.001) than in M40 and as much as 46% lower (P < 0.001) than that recorded in M20 (P < 0.001). The maximal rate of force development (RFD) on the force-time curve was in M70 lower (P < 0.001) than in M40 and as much as 64% lower than in M20. The heights in SJ and CMJ and the distance in SLJ in M70 were lower (P < 0.001) than in M40 and M20 (P < 0.001). In response to modifications of the visual surroundings the older subjects were 24%-47% (P < 0.05 and P < 0.001) slower in their response time in reaching the lit centre (TT) and remained 20%-34% (P < 0.001) less time inside the centre (TC) from the overall time of lighting than M40 and M20, respectively. In both older groups the individual values of isometric RFD correlated significantly (P < 0.05) with the individual balance values of TT and TC. The present results would suggest that the capacity for explosive force production declines drastically with increasing age, even more than maximal muscle strength. Aging may also lead to impaired balance with a decrease in event detection and speed of postural adjustments. The decreased ability to develop force rapidly in older people seems to be associated with a lower capacity for neuromuscular response in controlling postural sway.  相似文献   

17.
A muscle model that uses a modified Langevin equation with actomyosin potentials was used to describe the residual force enhancement after active stretching. Considering that the new model uses cross-bridge theory to describe the residual force enhancement, it is different from other models that use passive stretching elements. Residual force enhancement was simulated using a half sarcomere comprising 100 myosin molecules. In this paper, impulse is defined as the integral of an excess force from the steady isometric force over the time interval for which a stretch is applied. The impulse was calculated from the force response due to fast and slow muscle stretches to demonstrate the viscoelastic property of the cross-bridges. A cross-bridge mechanism was proposed as a way to describe the residual force enhancement on the basis of the impulse results with reference to the compliance of the actin filament. It was assumed that the period of the actin potential increased by 0.5% and the amplitude of the potential decreased by 0.5% when the half sarcomere was stretched by 10%. The residual force enhancement after 21.0% sarcomere stretching was 6.9% of the maximum isometric force of the muscle; this value was due to the increase in the number of cross-bridges.  相似文献   

18.
Residual force depression (rFD) and residual force enhancement (rFE) are intrinsic contractile properties of muscle. rFD is characterized as a decrease in steady-state isometric force following active shortening compared with a purely isometric contraction at the same muscle length and level of activation. By contrast, isometric force is increased following active lengthening compared to a reference isometric contraction at the same muscle length and level of activation; this is termed rFE. To date, there have been no investigations of rFD and rFE in human muscle fibres, therefore the purpose of this study was to determine whether rFD and rFE occur at the single muscle fibre level in humans. rFD and rFE were investigated in maximally activated single muscle fibres biopsied from the vastus lateralis of healthy adults. To induce rFD, fibres were activated and shortened from an average sarcomere length (SL) of 3.2–2.6 μm. Reference isometric contractions were performed at an average SL of 2.6 μm. To induce rFE, fibres were actively lengthened from an average SL of 2.6–3.2 μm and a reference isometric contraction was performed at an average SL of 3.2 μm. Isometric steady-state force was lower following active shortening (p < 0.05), and higher following active lengthening (p < 0.05), as compared to the reference isometric contractions. We demonstrated rFD and rFE in human single fibres which is consistent with previous animal models. The non-responder phenomenon often reported in rFE studies involving voluntary contractions at the whole human level was not observed at the single fibre level.  相似文献   

19.
It is well known that muscular force production is history-dependent, which results in enhanced (RFE) and depressed (RFD) steady-state forces after stretching and shortening, respectively. However, it remains unclear if force-enhancing mechanisms can contribute to increased performance during in vivo stretch-shortening cycles (SSCs) of human locomotor muscles. The purpose of this study was to investigate whether RFE-related mechanisms contribute to enhanced force and power output during SSCs of the human plantar flexor muscles. Net ankle torques of fourteen participants were measured during and after pure isometric, pure stretch, pure shortening, and SSC contractions when the triceps surae muscles were electrically stimulated at a submaximal level that resulted in 30% of their maximum isometric torque. Dynamic contractions were performed over an amplitude of 15°, from 5° plantar flexion to 10° dorsiflexion, at a speed of 120° s−1. External ankle work during shortening was 11.6% greater during SSCs compared to pure shortening contractions (p = .003). Additionally, RFD after SSCs (8.6%) was reduced compared to RFD after pure shortening contractions (12.0%; p < .05). It is therefore concluded that RFE-related mechanisms contribute to increased performance following SSCs of human locomotor muscles. Since RFD after SSCs decreased although work during shortening was increased, we speculate that the relevant mechanism lies outside actin-myosin interaction. Finally, our data suggests that RFE might be relevant and beneficial for human locomotion whenever a muscle is stretched, but this needs to be confirmed.  相似文献   

20.
To confirm the existence of epimuscular myofascial force transmission in humans, this study examined if manipulating joint angle to stretch the muscle can alter the shear modulus of a resting adjacent muscle, and whether there are regional differences in this response. The biceps brachii (BB: manipulated muscle) and the brachialis (BRA: resting adjacent muscle) were deemed suitable for this study because they are neighboring, yet have independent tendons that insert onto different bones. In order to manipulate the muscle length of BB only, the forearm was passively set at supination, neutral, and pronation positions. For thirteen healthy young adult men, the shear modulus of BB and BRA was measured with shear-wave elastography at proximal and distal muscle regions for each forearm position and with the elbow joint angle at either 100° or 160°. At both muscle regions and both elbow positions, BB shear modulus increased as the forearm was rotated from a supinated to pronated position. Conversely, BRA shear modulus decreased as function of forearm position. The effect of forearm position on shear modulus was most pronounced in the distal muscle region when the elbow was at 160°. The observed alteration of shear modulus of the resting adjacent muscle indicates that epimuscular myofascial force transmission is present in the human upper limb. Consistent with this assertion, we found that the effect of muscle length on shear modulus in both muscles was region-dependent. Our results also suggest that epimuscular myofascial force transmission may be facilitated at stretched muscle lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号