首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Yellow seed is a desirable characteristic for the breeding of oilseed Brassica crops, but the manifestation of seed coat color is very intricate due to the involvement of various pigments, the main components of which are flavonols, proanthocyanidin (condensed tannin), and maybe some other phenolic relatives, like lignin and melanin. The focus of this review is to examine the genetics mechanism regarding the biosynthesis and regulation of these pigments in the seed coat of oilseed Brassica. This knowledge came largely from recent researches on the molecular mechanism of TRANSPARENT TESTA (tt) and similar mutations in the ancestry model plant of Brassica, Arabidopsis. Some key enzymes in the flavonoid (flavonols and proanthocyanidin) biosynthetic pathway have been characterized in tt mutants. Some orthologs to these TRANSPARENT TESTA genes have also been cloned in Brassica species. However, it is suggested that some alterative metabolism pathways, including lignin and melanin, might also be involved in seed color manifestation. Polyphenol oxidases, such as laccase, tyrosinase, or even peroxidase, participate in the oxidation step in proanthocyanidin, lignin, and melanin biosynthesis. Moreover, some researches also suggested that melanic pigment in black-seeded Brassica was several fold higher than in yellow-seeded Brassica. Although more experiments are required to evaluate the importance of lignin and melanin in seed coat browning, the current results suggest that the flavonols and proanthocyanidin are not the only roles affecting seed color.  相似文献   

3.
4.
5.
A glabrous, yellow-seeded doubled haploid (DH) line and a hairy, black-seeded DH line in Chinese cabbage (B. rapa) were used as parents to develop a DH line population that segregated for both hairiness and seed coat color traits. The data showed that both traits completely co-segregated each other, suggesting that one Mendelian locus controlled both hairiness and seed coat color in this population. A fine genetic map was constructed and a SNP marker that was located inside a Brassica ortholog of TRANSPARENT TESTA GLABRA 1 (TTG1) in Arabidopsis showed complete linkage to both the hairiness and seed coat color gene, suggesting that the Brassica TTG1 ortholog shared the same gene function as its Arabidopsis counterpart. Further sequence analysis of the alleles from hairless, yellow-seeded and hairy, black-seeded DH lines in B. rapa showed that a 94-base deletion was found in the hairless, yellow-seeded DH lines. A nonfunctional truncated protein in the hairless, yellow-seeded DH lines in B. rapa was suggested by the coding sequence of the TTG1 ortholog. Both of the TTG1 homologs from the black and yellow seeded B. rapa lines were used to transform an Arabidopsis ttg1 mutant and the results showed that the TTG1 homolog from the black seeded B. rapa recovered the Arabidopsis ttg1 mutant, while the yellow seeded homolog did not, suggesting that the deletion in the Brassica TTG1 homolog had led to the yellow seeded natural mutant. This was the first identified gene in Brassica species that simultaneously controlled both hairiness and seed coat color traits.  相似文献   

6.
Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus.  相似文献   

7.
8.
D J Somers  G Rakow  V K Prabhu  K R Friesen 《Génome》2001,44(6):1077-1082
The development of yellow-seeded Brassica napus for improving the canola-meal quality characteristics of lower fibre content and higher protein content has been restricted because no yellow-seeded forms of B. napus exist, and their conventional development requires interspecific introgression of yellow seed coat colour genes from related species. A doubled-haploid (DH) population derived from the F1 generation of the cross 'Apollo' (black-seeded) x YN90-1016 (yellow-seeded) B. napus was analysed via bulked segregant analysis to identify molecular markers associated with the yellow-seed trait in B. napus for future implementation in marker-assisted breeding. A single major gene (pigment 1) flanked by eight RAPD markers was identified co-segregating with the yellow seed coat colour trait in the population. This gene explained over 72% of the phenotypic variation in seed coat colour. Further analysis of the yellow-seeded portion of this DH population revealed two additional genes favouring 'Apollo' alleles, explaining 11 and 8.5%, respectively, of the yellow seed coat colour variation. The data suggested that there is a dominant, epistatic interaction between the pigment I locus and the two additional genes. The potential of the markers to be implemented in plant breeding for the yellow-seed trait in B. napus is discussed.  相似文献   

9.
Yellow seed is an important trait inBrassica napus. To know the genet ic basis of yellow seed color inBrassica napus, we carried out genetic studies by using conventional genetics analyses. The conventional genetics was studied in generations (F1 F2 reciprocal F2, BC1, and F23) ofB. napus derived from crosses between a yellow-seeded (No. 2127-17) and nine different black-seeded parents. The results indicated that seed color was mainly controlled by the maternal genotype but influenced by the interact ion between the maternal and endosperm and/or embryonic genotypes. In the combinations which included black-seeded lines SW0780, 94560, 94545 and 1141B, the yellow seed is partially dominant over black with two or three dominance epistasis ratio. A dominant yellow-seeded gene Y which exhibits epistatic effects on the two independent dominant black-seeded genes B and C was ident ified in DH line No. 2127-17. These observations are in agreement with our previous reports. But in the rests, including the crosses with HS No.4, HS No. 3, XY No. 15, 94570 and ZS No. 10, the black seed color was dominant over yellow seed color. The inheritance of this trait in the segregating populations fits the model of a digenic dominance epistasis or triplicate dominance epistasis. A new locus was identified and designated as D: the dominant gene D for black seed color inhibits the dominant gene Y. Therefore, in combination with the Y, B and C, we found that the seed color was influenced by at least four genes. Identifying seed color genes and defining their inheritance should further our understanding of yellow seed color trait and facilitate development of new and better yellow-seeded cult ivars ofBrassics napus.  相似文献   

10.
Seed color inheritance in Brassica juncea was studied in F1, F2 and BC1 populations. Seed color was found under the control of the maternal genotype, and the brown-seeded trait was dominant over the yellow-seeded trait. Segregation analysis revealed that one pair of major genes controlled the seed coat color. To develop markers linked to the seed color gene, AFLP (amplified fragments length polymorphism) combined with BSA (bulk segregant analysis) technology was used to screen the parents and bulks selected randomly from an F2 population (Wuqi yellow mustard × Wugong mustard) consisting of 346 individuals. From a survey of 512 AFLP primer combinations, 15 AFLP markers located on either side of the gene were identified, and the average distance between markers was 2.59 cM. P11MG15 was a cosegregated marker, and the closest markers (P03MC08, P16MC02 and P11MG01) were at a distance of 0.3, 0.3 and 0.7 cM from the target gene, respectively. In order to utilize the markers for breeding of yellow-seeded varieties, four AFLP markers, P11MG01, P15MG15, P09MC12 and P16MC02 were successfully converted into SCAR (sequence characterized amplified region) markers. The seed color trait controlled by the single gene together with the available molecular markers will greatly facilitate the future breeding of yellow-seeded varieties. The markers found in the present study could accelerate the step of map-based cloning of the target gene.  相似文献   

11.
12.
Microsatellite marker technology in combination with three doubled haploid mapping populations of Brassica juncea were used to map and tag two independent loci controlling seed coat colour in B. juncea. One of the populations, derived from a cross between a brown-seeded Indian cultivar, Varuna, and a Canadian yellow-seeded line, Heera, segregated for two genes coding for seed coat colour; the other two populations segregated for one gene each. Microsatellite markers were obtained from related Brassica species. Three microsatellite markers (Ra2-A11, Na10-A08 and Ni4-F11) showing strong association with seed coat colour were identified through bulk segregant analysis. Subsequent mapping placed Ra2-A11 and Na10-A08 on linkage group (LG) 1 at an interval of 0.6 cM from each other and marker Ni4-F11 on LG 2 of the linkage map of B. juncea published previously (Pradhan et al., Theor Appl Genet 106:607–614, 2003). The two seed coat colour genes were placed with markers Ra2-A11 and Na10-A08 on LG 1 and Ni4-F11 on LG 2 based on marker genotyping data derived from the two mapping populations segregating for one gene each. One of the genes (BjSC1) co-segregated with marker Na10-A08 in LG 1 and the other gene (BjSC2) with Ni4-F11 in LG 2, without any recombination in the respective mapping populations of 130 and 103 segregating plants. The identified microsatellite markers were studied for their length polymorphism in a number of yellow-seeded eastern European and brown-seeded Indian germplasm of B. juncea and were found to be useful for the diversification of yellow seed coat colour from a variety of sources into Indian germplasm.  相似文献   

13.
14.
15.
16.
A Brassica juncea mapping population was generated and scored for seed coat colour. A combination of bulked segregant analysis and AFLP methodology was employed to identify markers linked to seed coat colour in B. juncea. AFLP analysis using 16 primer combinations revealed seven AFLP markers polymorphic between the parents and the bulks. Individual plants from the segregating population were analysed, and three AFLP markers were identified as being tightly linked to the seed coat colour trait and specific for brown-seeded individuals. Since AFLP markers are not adapted for large-scale application in plant breeding, our objective was to develop a fast, cheap and reliable PCR-based assay. Towards this goal, we employed PCR-walking technology to isolate sequences adjacent to the linked AFLP marker. Based on the sequence information of the cloned flanking sequence of marker AFLP8, primers were designed. Amplification using the locus-specific primers generated bands at 0.5 kb and 1.2 kb with the yellow-seeded parent and a 1.1-kb band with the brown-seeded parent. Thus, the dominant AFLP marker (AFLP8) was converted into a simple codominant SCAR (Sequence Characterized Amplified Region) marker and designated as SCM08. Scoring of this marker in a segregating population easily distinguished yellow- and brown-seeded B. juncea and also differentiated between homozygous (BB) and heterozygous (Bb) brown-seeded individuals. Thus, this marker will be useful for the development of yellow seed B. juncea cultivars and facilitate the map-based cloning of genes responsible for seed coat colour trait. Received: 2 October 1999 / Accepted: 11 November 1999  相似文献   

17.
18.

Background

Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare.

Results

In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus.

Conclusions

Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance.
  相似文献   

19.
20.
Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号