首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
NAC转录因子家族是植物特有的一类转录因子,在植物的生长发育、器官建成及逆境胁迫和激素信号应答中均发挥重要作用。本研究在基因组范围内,利用生物信息学方法对番茄的NAC转录因子家族成员、分布及结构和功能等进行分析。预测结果显示番茄NAC家族包含102个蛋白质,分为12亚族,其中茄属特有的TNAC亚族中成员最多,具有25个,其他NAC转录因子与拟南芥NAc家族具有相似分类。保守基序分析,在番茄NAC结构域中包含7个保守的NAM基序,主要分布在序列的N端,表明这些基序的存在对NAC蛋白质功能的执行是必需的。理化性质和结构分析表明,番茄NAC蛋白质绝大多数是亲水蛋白质,主要以无规则卷曲构成,而α-螺旋、β-折叠和β-转角则散布于整个蛋白质中,在各亚族中没有规律。  相似文献   

3.
谷子ARF基因家族的鉴定与生物信息学分析   总被引:2,自引:0,他引:2  
生长素应答因子(ARF,auxin response factors)是一类可以结合在生长素应答基因启动子部位的转录因子,在植物的生长发育中起至关重要的作用。本研究以谷子为材料,共鉴定出24个ARF基因,命名为Si ARFs。利用生物信息学对谷子Si ARFs基因的结构、染色体分布、基因倍增模式、系统进化以及基因的表达模式进行分析。结果表明,Si ARF基因家族在染色体上呈不均匀分布,除2号染色体外,其他染色体上都有该家族基因,基因的扩增模式为分散复制与片段复制。Si ARFs基因家族具有相对保守的结构,即包含1个保守的B3 DNA结构域、ARF结构域和Aux/IAA结构域,ARF蛋白的3D结构含有3个α螺旋和7个β折叠结构。进化树分析表明谷子ARF蛋白和物种相近的高粱、玉米聚在一起。大多数ARF基因在谷子根、茎、叶和穗中都有表达,且不同基因表达量有较大差异。  相似文献   

4.
类根瘤菌26膜内在蛋白(nodulin 26 like intrinsic proteins,NIPs)是水通道蛋白的亚类,在植物营养获取和胁迫应答过程中发挥着重要作用。该研究利用多种生物信息学软件,对葡萄NIP家族基因进行分析,并采用RT PCR方法克隆得到4个NIP家族基因,利用qRT PCR方法分析非生物胁迫下NIP基因的表达特征。结果显示:(1)在葡萄基因组中,共鉴定到8个NIP基因,分布于葡萄4条染色体上,主要定位在质膜中;结构上含有6个跨膜结构域和两个典型的保守结构域NPA;氨基酸序列中存在很多个可能的磷酸化位点。(2)进化分析表明葡萄和拟南芥NIP基因具有较高的同源性,基因结构包含外显子数4~6个,保守基序种类和数量相似;基因启动子上游2 kb包含多种应答逆境和激素的顺式调控元件,其数量差异可能与基因本身功能相关。(3)NIP家族基因在不同组织中表达水平差异较大,多数成员在叶中表达水平较高,在茎中较低;成功克隆得到4个葡萄VvNIP基因,其长度分别为789 bp、606 bp、897 bp、789 bp,分别编码262、201、298、293个氨基酸。(4)qRT PCR结果显示,不同胁迫处理下NIP基因在葡萄叶片中的表达水平不同:低温处理下葡萄NIP基因大多呈显著下调表达;盐胁迫下,除VvNIP2 1、VvNIP4 2外其余家族基因均呈下调表达;干旱胁迫下VvNIP4 2显著上调。研究表明,VvNIP基因对多种胁迫均有响应,为葡萄逆境胁迫机制研究提供了参考。  相似文献   

5.
6.
7.
8.
Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.  相似文献   

9.
Sucrose synthase (Sus) is a key enzyme in plant sucrose metabolism. In cotton, Sus (EC 2.4.1.13) is the main enzyme that degrades sucrose imported into cotton fibers from the phloem of the seed coat. This study demonstrated that the genomes of Gossypium arboreum L., G. raimondii Ulbr., and G. hirsutum L., contained 8, 8, and 15 Sus genes, respectively. Their structural organizations, phylogenetic relationships, and expression profiles were characterized. Comparisons of genomic and coding sequences identified multiple introns, the number and positions of which were highly conserved between diploid and allotetraploid cotton species. Most of the phylogenetic clades contained sequences from all three species, suggesting that the Sus genes of tetraploid G. hirsutum derived from those of its diploid ancestors. One Sus group (Sus I) underwent expansion during cotton evolution. Expression analyses indicated that most Sus genes were differentially expressed in various tissues and had development-dependent expression profiles in cotton fiber cells. Members of the same orthologous group had very similar expression patterns in all three species. These results provide new insights into the evolution of the cotton Sus gene family, and insight into its members' physiological functions during fiber growth and development.  相似文献   

10.
11.
Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis   总被引:7,自引:0,他引:7  
Tian C  Wan P  Sun S  Li J  Chen M 《Plant molecular biology》2004,54(4):519-532
  相似文献   

12.
The F-box protein-encoding gene family plays an essential role in plant stress resistance. In present study, 126 non-redundant F-box genes were identified in barley (Hordeum vulgare L., Hv). The corresponding proteins contained 165– 887 amino acid residues and all were amphiphilic, except 5 proteins. Phylogenetic analysis of F-box protein sequences in barley and stress-related F-box protein sequences in wheat and Arabidopsis thaliana (At) was used to classify barley F-box genes are divided into 9 subfamilies (A–I). A structure-based sequence alignment demonstrated that F-box proteins were highly conserved with a total of 10 conserved motifs. In total, 124 F-box genes were unevenly distributed on 7 chromosomes; another 2 genes have not been anchored yet. The gene structure analysis revealed high variability in the number of exons and introns in F-box genes. Comprehensive analysis of expression profiles and phylogenetic tree analysis, a total of 12 F-box genes that may be related to stress tolerance in barley were screened. Of the 12 detected F-box genes, 8 and 10 were upregulated after drought and salt stress treatments, respectively, using quantitative real-time polymerase chain reaction (qRT-PCR). This study is the first systematic analysis conducted on the F-box gene family in barley, which is of great importance for clarifying this family’s bioinformatic characteristics and elucidating its function in barley stress resistance. These results will serve as a theoretical reference for subsequent research on molecular regulation mechanisms, genetic breeding, and improvement.  相似文献   

13.
14.
为明确AKR基因在葡萄非生物胁迫中的作用,利用生物信息学方法对葡萄AKR基因家族(VvAKRs)进行了全基因组鉴定,并验证其在非生物胁迫下的表达规律。结果表明:(1)该基因家族在葡萄基因组中有9个成员,主要分布在5条染色体上;氨基酸残基在275~2 686 aa之间,理论等电点在5.1~9.1之间。(2)系统进化分析表明,该基因家族分为6个亚族,第6亚族VvAKR家族成员最多。(3)密码子偏好性分析结果表明,葡萄AKR基因家族密码子偏好性较弱。(4)共线性分析表明,葡萄9个AKR基因中只有VvAKR8和VvAKR9之间存在共线性关系。(5)qRT PCR分析结果显示,葡萄AKR家族基因在根、茎、叶不同组织中对激素和非生物胁迫的响应程度有差异。非生物胁迫下,VvAKR1、VvAKR3、VvAKR8和VvAKR9基因在葡萄根、茎、叶组织中表达量较高;激素处理下,根组织中VvAKR3、VvAKR6和VvAKR8基因在ABA、MeJA、SA处理下表达量较高;茎组织中VvAKR3基因在NAA、GA3处理下表达量较高;叶组织中VvAKR1基因在各激素处理下表达量都较高。研究认为,葡萄AKR基因家族在响应葡萄非生物胁迫时发挥着不同的作用,为葡萄抗逆性研究提供了一定的理论依据。  相似文献   

15.
Zuo  Cunwu  Zhang  Weina  Ma  Zonghuan  Chu  Mingyu  Mao  Juan  An  Zeshan  Chen  Baihong 《Plant Molecular Biology Reporter》2018,36(5-6):844-857

It has been reported that members of the Catharanthus roseus receptor-like kinase1-like kinase (CrRLK1L) gene family detect cell wall integrity, cell-to-cell communication, and biotic and abiotic stress. We performed a comprehensive study including the genome-wide identification, characterization, and gene expression analysis of CrRLK1Ls in apple (Malus domestica). Sixty-seven M. domestica CrRLK1Ls (MdCrRLK1Ls) were identified based on their domain structure. Molecular weight and pI ranged from 52.36–141 kDa and 5.05–8.9, respectively. They were distributed across 16 of the 18 chromosomes and classified into five phylogenetic branches. Exon-intron structural analysis indicated a wide range of exon numbers. Collinearity analysis showed that both segmental-and tandem-duplication contributed to the expansion of this family. Cis-elements in the MdCrRLK1L promoter region responded mainly to light, circadian rhythm, phytohormones, and biotic or abiotic stress. Many members exhibited tissue-specific expression patterns and differentially expressed under biotic stresses, which may contribute to the different functional roles of MdCrRLK1Ls under physiological stress and/or pathological conditions. This study provides new insights into the CrRLK1Ls in Malus spp.

  相似文献   

16.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in plants. As the last component of the MAPK cascade (MAPKKK–MAPKK–MAPK), MAPK plays important roles in linking upstream kinases and downstream substrates. The MAPK proteins belong to a complex gene family in plants, with 20 MAPK genes in the Arabidopsis genome, 17 in the rice genome, and 21 in the poplar genome. Although the maize genome sequencing has been completed, no comprehensive study has been reported thus far for the MAPK gene family in maize. In this study, we identified 19 MAPK genes in maize. These ZmMPK genes belong to four groups (A–D) found in other plants. The phylogeny, chromosomal location, gene structure, and the functional relevancy of ZmMPK genes were analyzed. Moreover, we discuss the evolutionary divergence of MAPK genes in maize. Furthermore, we analyzed the expression profiles of ZmMPKs using the public microarray data and performed expression analyses in maize seedlings and adult plants. The data obtained from our study contribute to a better understanding of the complexity of MAPKs in plants and provide a useful reference for further functional analysis of MAPK genes in maize.  相似文献   

17.
Journal of Plant Growth Regulation - Lazarus 1 (LAZ1) is a six transmembrane protein with DUF300 domain, and functions as organic solute transporter in vertebrates. However, there was no any...  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号