首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central protein of the four component sulfur oxidizing (Sox) enzyme system of Paracoccus pantotrophus, SoxYZ, carries at the SoxY subunit the covalently bound sulfur substrate which the other three proteins bind, oxidize, and release as sulfate. SoxYZ of different preparations resulted in different specific thiosulfate-oxidizing activities of the reconstituted Sox enzyme system. From these preparations SoxYZ was activated up to 24-fold by different reductants with disodium sulfide being the most effective and yielded a uniform specific activity of the Sox system. The activation comprised the activities with hydrogen sulfide, thiosulfate, and sulfite. Sulfide-activation decreased the predominant beta-sheet character of SoxYZ by 4%, which caused a change in its conformation as determined by infrared spectroscopy. Activation of SoxYZ by sulfide exposed the thiol of the C-terminal Cys-138 of SoxY as evident from alkylation by 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. Also, SoxYZ activation enhanced the formation of the Sox(YZ)2 heterotetramer as evident from density gradient gel electrophoresis. The tetramer was formed due to an interprotein disulfide between SoxY to yield a SoxY-Y dimer as determined by combined high pressure liquid chromatography and mass spectrometry. The significance of the conformational change of SoxYZ and the interprotein disulfide between SoxY-Y is discussed.  相似文献   

2.
Sulfur dehydrogenase, Sox(CD)(2), is an essential part of the sulfur-oxidizing enzyme system of the chemotrophic bacterium Paracoccus pantotrophus. Sox(CD)(2) is a alpha(2)beta(2) complex composed of the molybdoprotein SoxC (43 442 Da) and the hybrid diheme c-type cytochrome SoxD (37 637 Da). Sox(CD)(2) catalyzes the oxidation of protein-bound sulfur to sulfate with a unique six-electron transfer. Amino acid sequence analysis identified the heme-1 domain of SoxD proteins to be specific for sulfur dehydrogenases and to contain a novel ProCysMetXaaAspCys motif, while the heme-2 domain is related to various cytochromes c(2). Purification of sulfur dehydrogenase without protease inhibitor yielded a dimeric SoxCD(1) complex consisting of SoxC and SoxD(1) of 30 kDa, which contained only the heme-1 domain. The heme-2 domain was isolated as a new cytochrome SoxD(2) of about 13 kDa. Both hemes of SoxD in Sox(CD)(2) are redox-active with midpoint potentials at E(m)1 = 218 +/- 10 mV and E(m)2 = 268 +/- 10 mV, while SoxCD(1) and SoxD(2) both exhibit a midpoint potential of E(m) = 278 +/- 10 mV. Electrochemically induced FTIR difference spectra of Sox(CD)(2), SoxCD(1), and SoxD(2) were distinct. A carboxy group is protonated upon reduction of the SoxD(1) heme but not for SoxD(2). The specific activity of SoxCD(1) and Sox(CD)(2) was identical as was the yield of electrons with thiosulfate in the reconstituted Sox enzyme system. To examine the physiological significance of the heme-2 domain, a mutant was constructed that was deleted for the heme-2 domain, which produced SoxCD(1) and transferred electrons from thiosulfate to oxygen. These data demonstrated the crucial role of the heme-1 domain of SoxD for catalytic activity, electron yield, and transfer of the electrons to the cytoplasmic membrane, while the heme-2 domain mediated the alpha(2)beta(2) tetrameric structure of sulfur dehydrogenase.  相似文献   

3.
Microbial redox reactions of inorganic sulfur compounds are one of the important reactions for the recycling of sulfur to maintain the environmental sulfur balance. These reactions are carried out by phylogenetically diverse microorganisms. The sulfur oxidizing gene cluster (sox) of α-proteobacteria, Allochromatium vinosum comprises two divergently transcribed units. The central players of this process are SoxY, SoxZ and SoxL. SoxY is sulfur compound binder which binds to sulfur anions with the help of SoxZ. SoxL is a rhodanese like protein, which then cleaves off the sulfur substrate from the SoxYZ complex to recycle the SoxY and SoxZ. In the present work, homology modeling has been employed to build the three dimensional structures of SoxY, SoxZ and SoxL. With the help of docking simulations the amino acid residues of these proteins involved in the interactions have been identified. The interactions between the SoxY, SoxZ and SoxL proteins are mediated mainly through hydrogen bonding. Strong positive fields created by the SoxZ and SoxL proteins are found to be responsible for the binding and removal of the sulfur anion. The probable biochemical mechanism of sulfur anion oxidation process has been identified.  相似文献   

4.
5.
SoxB is an essential component of the bacterial Sox sulfur oxidation pathway. SoxB contains a di-manganese(II) site and is proposed to catalyze the release of sulfate from a protein-bound cysteine S-thiosulfonate. A direct assay for SoxB activity is described. The structure of recombinant Thermus thermophilus SoxB was determined by x-ray crystallography to a resolution of 1.5 Å. Structures were also determined for SoxB in complex with the substrate analogue thiosulfate and in complex with the product sulfate. A mechanistic model for SoxB is proposed based on these structures.The oxidation of reduced inorganic sulfur species by sulfur bacteria is an important component of the biogeochemical sulfur cycle and has practical applications in biomining, agriculture, biocorrosion, fuel desulfuration, and waste treatment (1, 2). Sulfur bacteria use the electrons liberated in sulfur oxidation reactions as the reductant for carbon dioxide fixation and/or as donors to respiratory electron transport chains.The Sox (sulfur oxidizing) system is one of the most widely distributed sulfur oxidation pathways and is found in both photosynthetic and nonphotosynthetic sulfur-oxidizing eubacteria (3). Substrates of the Sox system are reported to include thiosulfate, sulfide, elemental sulfur, sulfite, and tetrathionate (46). The Sox pathway has been best characterized in the α-Proteobacterium Paracoccus pantotrophus. In this bacterium thiosulfate is oxidized to sulfate by the four periplasmic protein complexes SoxYZ, SoxAX, SoxB, and SoxCD (3, 7, 8). Intermediates in the pathway are covalently bound to a cysteine residue located in a conserved Gly-Gly-Cys-Gly-Gly sequence at the C terminus of the SoxY protein (9). This C-terminal peptide acts as a swinging arm enabling the cysteine and its bound adducts to enter the active sites of the other pathway components (10). In the current pathway model the heme protein SoxAX (11) oxidatively conjugates thiosulfate to the SoxY swinging arm to form a cysteine S-thiosulfonate, which is then degraded by a combination of SoxB and SoxCD. The electrons produced in the two oxidative steps are fed into the electron transfer chain via a small c-type cytochrome. Many bacteria with a Sox system lack the SoxCD complex found in P. pantotrophus and are instead thought to feed the sulfane group of thiosulfate into other sulfur oxidation pathways (1214).The reaction assigned to SoxB in the Sox pathway model is the hydrolysis of a sulfur-sulfur bond. This is an unusual enzymatic reaction that has only otherwise been suggested for enzymes designated as trithionate or tetrathionate hydrolases (1518). The thiosulfohydrolase activity proposed for SoxB has yet to be directly demonstrated. It is, instead, inferred from two key observations. First, in vitro pathway reconstitution experiments show that SoxB catalyzes a nonoxidative reaction (7). Second, SoxB has sequence similarity to the 5′-nucleotidase family of enzymes (19). Because 5′-nucleotidases catalyze the hydrolytic cleavage of phosphate groups from nucleotides, this sequence similarity suggests that SoxB also carries out a hydrolytic reaction.Catalytically active SoxB purified from P. pantotrophus or the closely related bacterium Paracoccus versutus contains up to two atoms of manganese but only traces of other metal ions (20, 21). EPR studies suggest that the manganese ions are present in the form of a dinuclear Mn(II) cluster with bis(μ-hydroxo) (μ-carboxylato) bridging ligands (20, 22).In phylogenetic and environmental studies the presence of a soxB gene has been used as a marker for the presence of the Sox pathway and as an indicator of the ability of the organism to oxidize thiosulfate (23, 24).Here we report experiments aimed at establishing a direct assay of SoxB activity. We have used x-ray crystallography to determine the structure of recombinant SoxB from the thermophilic bacterium Thermus thermophilus. This is the first structure of an enzyme catalyzing the hydrolysis of a sulfur-sulfur bond. We have also obtained structures of T. thermophilus SoxB in complex with mechanistically relevant ligands. Based on these structures, we propose a model for the SoxB mechanism.  相似文献   

6.
Organisms using the thiosulfate-oxidizing Sox enzyme system fall into two groups: group 1 forms sulfur globules as intermediates (Allochromatium vinosum), group 2 does not (Paracoccus pantotrophus). While several components of their Sox systems are quite similar, i.e. the proteins SoxXA, SoxYZ and SoxB, they differ by Sox(CD)2 which is absent in sulfur globule-forming organisms. Still, the respective enzymes are partly exchangeable in vitro: P. pantotrophus Sox enzymes work productively with A. vinosum SoxYZ whereas A. vinosum SoxB does not cooperate with the P. pantotrophus enzymes. Furthermore, A. vinosum SoxL, a rhodanese-like protein encoded immediately downstream of soxXAK, appears to play an important role in recycling SoxYZ as it increases thiosulfate depletion velocity in vitro without increasing the electron yield.  相似文献   

7.
The sulfur-oxidizing enzyme system (Sox) of the chemotroph Paracoccus pantotrophus is composed of several proteins, which together oxidize hydrogen sulfide, sulfur, thiosulfate or sulfite and transfers the gained electrons to the respiratory chain. The hetero-dimeric cytochrome c complex SoxXA functions as heme enzyme and links covalently the sulfur substrate to the thiol of the cysteine-138 residue of the SoxY protein of the SoxYZ complex. Here, we report the crystal structure of the c-type cytochrome complex SoxXA. The structure could be solved by molecular replacement and refined to a resolution of 1.9A identifying the axial heme-iron coordination involving an unusual Cys-251 thiolate of heme2. Distance measurements between the three heme groups provide deeper insight into the electron transport inside SoxXA and merge in a better understanding of the initial step of the aerobic sulfur oxidation process in chemotrophic bacteria.  相似文献   

8.
Quentmeier A  Friedrich CG 《FEBS letters》2001,503(2-3):168-172
Four proteins of Paracoccus pantotrophus are required for hydrogen sulfide-, sulfur-, thiosulfate- and sulfite-dependent horse heart cytochrome c reduction. The lack of free intermediates suggested a protein-bound sulfur oxidation mechanism. The SoxY protein has a novel motif containing a cysteine residue. Electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry of the SoxYZ protein revealed one mass for SoxZ and different masses for SoxY, indicating native SoxY (10977 Da) and SoxY with additional masses of +32, +80, +112 and +144 Da, suggesting addition of sulfur, sulfite, thiosulfate and thioperoxomonosulfate. Reduction of SoxY removed the additional masses, indicating a thioether or thioester bond. N-Ethylmaleimide inhibited thiosulfate-oxidation and the kinetics suggested a turn-over-dependent mode of action. These data were evidence that the sulfur atom to be oxidized was covalently linked to the thiol moiety of the cysteine residue of SoxY and the active site of sulfur oxidation.  相似文献   

9.
Inorganic sulfur oxidizing system in green sulfur bacteria   总被引:2,自引:0,他引:2  
Green sulfur bacteria use various reduced sulfur compounds such as sulfide, elemental sulfur, and thiosulfate as electron donors for photoautotrophic growth. This article briefly summarizes what is known about the inorganic sulfur oxidizing systems of these bacteria with emphasis on the biochemical aspects. Enzymes that oxidize sulfide in green sulfur bacteria are membrane-bound sulfide-quinone oxidoreductase, periplasmic (sometimes membrane-bound) flavocytochrome c sulfide dehydrogenase, and monomeric flavocytochrome c (SoxF). Some green sulfur bacteria oxidize thiosulfate by the multienzyme system called either the TOMES (thiosulfate oxidizing multi-enzyme system) or Sox (sulfur oxidizing system) composed of the three periplasmic proteins: SoxB, SoxYZ, and SoxAXK with a soluble small molecule cytochrome c as the electron acceptor. The oxidation of sulfide and thiosulfate by these enzymes in vitro is assumed to yield two electrons and result in the transfer of a sulfur atom to persulfides, which are subsequently transformed to elemental sulfur. The elemental sulfur is temporarily stored in the form of globules attached to the extracellular surface of the outer membranes. The oxidation pathway of elemental sulfur to sulfate is currently unclear, although the participation of several proteins including those of the dissimilatory sulfite reductase system etc. is suggested from comparative genomic analyses.  相似文献   

10.
11.
Quentmeier A  Li L  Friedrich CG 《FEBS letters》2008,582(25-26):3701-3704
The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, reacts with three different Sox proteins. Its active site Cys110(Y) is on the carboxy-terminus of the SoxY subunit. SoxYZ "as isolated" consisted mainly of the catalytically inactive SoxY-Y(Z)(2) heterotetramer linked by a Cys110(Y)-Cys110(Y) interprotein disulfide. Sulfide activated SoxYZ "as isolated" 456-fold, reduced the disulfide, and yielded an active SoxYZ heterodimer. The reductant tris(2-carboxyethyl)phosphine (TCEP) inactivated SoxYZ. This form was not re-activated by sulfide, which identified it as a different inactive form. In analytical gel filtration, the elution of "TCEP-treated" SoxYZ was retarded compared to active SoxYZ, indicating a conformational change. The possible enzymes involved in the re-activation of each inactive form of SoxYZ are discussed.  相似文献   

12.
The bacterial Sox (sulfur oxidizing) system allows the utilization of inorganic sulfur compounds in energy metabolism. Central to this process is the SoxYZ complex that carries the pathway intermediates on a cysteine residue near the C terminus of SoxY. Crystal structures have been determined for Paracoccus pantotrophus SoxYZ with the carrier cysteine in the underivatized state, conjugated to the polysulfide mimic beta-mercaptoethanol, and as the sulfonate adduct pathway intermediate. The carrier cysteine is located on a peptide swinging arm and is bracketed on either side by diglycine dipeptides acting as molecular universal joints. This structure provides a novel solution to the requirement that the cysteine-bound intermediates be able to access and orient themselves within the active sites of multiple partner enzymes. Adjacent to the swinging arm there is a conserved, deep, apolar pocket into which the beta-mercaptoethanol adduct extends. This pocket would be well suited to a role in protecting labile pathway intermediates from adventitious reactions.  相似文献   

13.
14.
15.
The persulfide sulfur formed on an active site cysteine residue of pyridoxal 5′-phosphate-dependent cysteine desulfurases is subsequently incorporated into the biosynthetic pathways of a variety of sulfur-containing cofactors and thionucleosides. In molybdenum cofactor biosynthesis, MoeB activates the C terminus of the MoaD subunit of molybdopterin (MPT) synthase to form MoaD-adenylate, which is subsequently converted to a thiocarboxylate for the generation of the dithiolene group of MPT. It has been shown that three cysteine desulfurases (CsdA, SufS, and IscS) of Escherichia coli can transfer sulfur from l-cysteine to the thiocarboxylate of MoaD in vitro. Here, we demonstrate by surface plasmon resonance analyses that IscS, but not CsdA or SufS, interacts with MoeB and MoaD. MoeB and MoaD can stimulate the IscS activity up to 1.6-fold. Analysis of the sulfuration level of MoaD isolated from strains defective in cysteine desulfurases shows a largely decreased sulfuration level of the protein in an iscS deletion strain but not in a csdA/sufS deletion strain. We also show that another iscS deletion strain of E. coli accumulates compound Z, a direct oxidation product of the immediate precursor of MPT, to the same extent as an MPT synthase-deficient strain. In contrast, analysis of the content of compound Z in ΔcsdA and ΔsufS strains revealed no such accumulation. These findings indicate that IscS is the primary physiological sulfur-donating enzyme for the generation of the thiocarboxylate of MPT synthase in MPT biosynthesis.  相似文献   

16.
Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme   总被引:2,自引:0,他引:2  
Reduced inorganic sulfur compounds are utilized by many bacteria as electron donors to photosynthetic or respiratory electron transport chains. This metabolism is a key component of the biogeochemical sulfur cycle. The SoxAX protein is a heterodimeric c-type cytochrome involved in thiosulfate oxidation. The crystal structures of SoxAX from the photosynthetic bacterium Rhodovulum sulfidophilum have been solved at 1.75 A resolution in the oxidized state and at 1.5 A resolution in the dithionite-reduced state, providing the first structural insights into the enzymatic oxidation of thiosulfate. The SoxAX active site contains a haem with unprecedented cysteine persulfide (cysteine sulfane) coordination. This unusual post-translational modification is also seen in sulfurtransferases such as rhodanese. Intriguingly, this enzyme shares further active site characteristics with SoxAX such as an adjacent conserved arginine residue and a strongly positive electrostatic potential. These similarities have allowed us to suggest a catalytic mechanism for enzymatic thiosulfate oxidation. The atomic coordinates and experimental structure factors have been deposited in the PDB with the accession codes 1H31, 1H32 and 1H33.  相似文献   

17.
Dissimilatory oxidation of thiosulfate in the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. Here, we report the crystal structures of a stand-alone SoxY protein of C. limicola f. thiosulfatophilum, solved at 2.15 A and 2.40 A resolution using X-ray diffraction data collected at 100 K and room temperature, respectively. The structure reveals a monomeric Ig-like protein, with an N-terminal alpha-helix, that oligomerizes into a tetramer via conserved contact regions between the monomers. The tetramer can be described as a dimer of dimers that exhibits one large hydrophobic contact region in each dimer and two small hydrophilic interface patches in the tetramer. At the tetramer interface patch, two conserved redox-active C-terminal cysteines form an intersubunit disulfide bridge. Intriguingly, SoxY exhibits a dimer/tetramer equilibrium that is dependent on the redox state of the cysteines and on the type of sulfur substrate component bound to them. Taken together, the dimer/tetramer equilibrium, the specific interactions between the subunits in the tetramer, and the significant conservation level of the interfaces strongly indicate that these SoxY oligomers are biologically relevant.  相似文献   

18.
Roseobacter clade bacteria (RCB) are abundant in marine bacterioplankton worldwide and central to pelagic sulfur cycling. Very little is known about their abundance and function in marine sediments. We investigated the abundance, diversity and sulfur oxidation potential of RCB in surface sediments of two tidal flats. Here, RCB accounted for up to 9.6% of all cells and exceeded abundances commonly known for pelagic RCB by 1000-fold as revealed by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA and sulfate thiohydrolase (SoxB) genes indicated diverse, possibly sulfur-oxidizing RCB related to sequences known from bacterioplankton and marine biofilms. To investigate the sulfur oxidation potential of RCB in sediments in more detail, we analyzed a metagenomic fragment from a RCB. This fragment encoded the reverse dissimilatory sulfite reductase (rDSR) pathway, which was not yet found in RCB, a novel type of sulfite dehydrogenase (SoeABC) and the Sox multi-enzyme complex including the SoxCD subunits. This was unexpected as soxCD and dsr genes were presumed to be mutually exclusive in sulfur-oxidizing prokaryotes. This unique gene arrangement would allow a metabolic flexibility beyond known sulfur-oxidizing pathways. We confirmed the presence of dsrA by geneFISH in closely related RCB from an enrichment culture. Our results show that RCB are an integral part of the microbial community in marine sediments, where they possibly oxidize inorganic and organic sulfur compounds in oxic and suboxic sediment layers.  相似文献   

19.
Reconstitution of the apoprotein of the molybdoenzyme nitrate reductase in extracts of the Neurospora crassa mutant nit-1 with molybdenum cofactor released by denaturation of purified molybdoenzymes is efficient in the absence of exogenous MoO42? under defined conditions. Evidence is presented that this molybdate-independent reconstitution is due to transfer of intact Mo cofactor, a complex of Mo and molybdopterin (MPT), the organic constituent of the cofactor. This complex can be separated from denatured protein by gel filtration, and from excess MoO42? by reverse-phase HPLC. Sulfite oxidase, native xanthine dehydrogenase, and cyanolyzed xanthine dehydrogenase are equipotent Mo cofactor donors. Other well-studied inactive forms of xanthine dehydrogenase are also shown to be good cofactor sources. Using xanthine dehydrogenase specifically radiolabeled in the cyanolyzable sulfur, it is shown that this terminal ligand of Mo is rapidly removed from Mo cofactor under the conditions used for reconstitution.  相似文献   

20.
The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, formed complexes with subunits associated and covalently bound. In denaturing SDS-polyacrylamide gel electrophoresis (PAGE) SoxY migrated at 12 and SoxZ at 16kDa. SDS-PAGE of homogeneous SoxYZ without reductant separated dimeric complexes of 25, 29, and 32kDa identified by the N-terminal amino acid sequences as SoxY-Y, SoxY-Z, and SoxZ-Z, and subunit cleavage by reduction suggested their linkage via protein disulfide bonds. SoxYZ was reversibly redox active between -0.25 and 0.2V, as monitored by a combined electrochemical and FTIR spectroscopic approach. The dimanganese SoxB protein (58.611Da) converted the covalently linked heterodimer SoxY-Z to SoxYZ with associated subunits which in turn aggregated to the heterotetramer Sox(YZ)(2). This reaction depended on time and the SoxB concentration, and demonstrated the interaction of these two Sox proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号