首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
The cyclin-dependent kinase Cdk1 and the related kinase Ime2 act in concert to trigger progression of the meiotic cell cycle in the yeast Saccharomyces cerevisiae. These kinases share several functions and substrates during meiosis, but their regulation seems to be clearly different. In contrast to Cdk1, no cyclin seems to be involved in the regulation of Ime2 activity. Ime2 is a highly unstable protein, and we aimed to elucidate the relevance of Ime2 instability. We first determined the sequence elements required for Ime2 instability by constructing a set of deletions in the IME2 gene. None of the small deletions in Ime2 affected its instability, but deletion of a 241 amino acid C-terminal region resulted in a highly stabilized protein. Thus, the C-terminal domain of Ime2 is important for mediating protein instability. The stabilized, truncated Ime2 protein is highly active in vivo. Replacement of the IME2 gene with the truncated IME2ΔC241 in diploid strains did not interfere with meiotic nuclear divisions, but caused abnormalities in spore formation, as manifested by the appearance of many asci with a reduced spore number such as triads and dyads. The truncated Ime2 caused a reduction of spore number in a dominant manner. We conclude that downregulation of Ime2 kinase activity mediated by the C-terminal domain is required for the efficient production of normal four-spore asci. Our data suggest a role for Ime2 in spore number control in S. cerevisiae.  相似文献   

4.
5.
6.
7.
Meiotic development (sporulation) in the yeast Saccharomyces cerevisiae is induced by nutritional deprivation. Smk1 is a meiosis-specific MAP kinase homolog that controls spore morphogenesis after the meiotic divisions have taken place. In this study, recessive mutants that suppress the sporulation defect of a smk1-2 temperature-sensitive hypomorph were isolated. The suppressors are partial function alleles of CDC25 and CYR1, which encode the Ras GDP/GTP exchange factor and adenyl cyclase, respectively, and MDS3, which encodes a kelch-domain protein previously implicated in Ras/cAMP signaling. Deletion of PMD1, which encodes a Mds3 paralog, also suppressed the smk1-2 phenotype, and a mds3-Δ pmd1-Δ double mutant was a more potent suppressor than either single mutant. The mds3-Δ, pmd1-Δ, and mds3-Δ pmd1-Δ mutants also exhibited mitotic Ras/cAMP phenotypes in the same rank order. The effect of Ras/cAMP pathway mutations on the smk1-2 phenotype required the presence of low levels of glucose. Ime2 is a meiosis-specific CDK-like kinase that is inhibited by low levels of glucose via its carboxy-terminal regulatory domain. IME2-ΔC241, which removes the carboxy-terminal domain of Ime2, exacerbated the smk1-2 spore formation phenotype and prevented cyr1 mutations from suppressing smk1-2. Inhibition of Ime2 in meiotic cells shortly after Smk1 is expressed revealed that Ime2 promotes phosphorylation of Smk1's activation loop. These findings demonstrate that nutrients can negatively regulate Smk1 through the Ras/cAMP pathway and that Ime2 is a key activator of Smk1 signaling.  相似文献   

8.
9.
10.
11.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

12.
Ime2p is a protein kinase that is expressed only during meiosis in Saccharomyces cerevisiae. Ime2p stimulates early, middle, and late meiotic gene expression and down-regulates expression of IME1, which specifies an activator of early meiotic genes that acts independently of Ime2p. We have identified a new gene, IDS2 (for IME2-dependent signaling), which has a functional relationship to Ime2p. An ids2 null mutation delays down-regulation of IME1 and expression of middle and late meiotic genes. In an ime1 null mutant that express IME2 from the GAL1 promoter (ime1 delta PGAL1-IME2 mutant), early meiotic gene expression depends only upon Ime2p. In such strains, Ids2p is dispensable for expression of the early genes HOP1 and SPO13 but is essential for expression of the middle and late genes SPS1, SPS2, and SPS100. Ids2p is also essential for the autoregulatory pathway through which Ime2p activates its own expression via the IME2 upstream activation sequences (UAS). An PGAL1-IME2 derivative that produces a truncated Ime2p (lacking its C-terminal 174 residues) permits IME2 UAS activation in the absence of Ids2p. This observation suggests that Ids2p acts upstream of Ime2p or that Ids2p and Ime2p act in independent, convergent pathways to stimulate IME2 UAS activity. Accumulation of epitope-tagged Ids2p derivatives is greatest in growing cells and declines during meiosis. We propose that Ids2p acts indirectly to modify Ime2p activity, thus permitting Ime2p to carry out later meiotic functions.  相似文献   

13.
14.
15.
Hall C  Welch J  Kowbel DJ  Glass NL 《PloS one》2010,5(11):e14055

Background

Self/nonself discrimination is an essential feature for pathogen recognition and graft rejection and is a ubiquitous phenomenon in many organisms. Filamentous fungi, such as Neurospora crassa, provide a model for analyses of population genetics/evolution of self/nonself recognition loci due to their haploid nature, small genomes and excellent genetic/genomic resources. In N. crassa, nonself discrimination during vegetative growth is determined by 11 heterokaryon incompatibility (het) loci. Cell fusion between strains that differ in allelic specificity at any of these het loci triggers a rapid programmed cell death response.

Methodology/Principal Findings

In this study, we evaluated the evolution, population genetics and selective mechanisms operating at a nonself recognition complex consisting of two closely linked loci, het-c (NCU03493) and pin-c (NCU03494). The genomic position of pin-c next to het-c is unique to Neurospora/Sordaria species, and originated by gene duplication after divergence from other species within the Sordariaceae. The het-c pin-c alleles in N. crassa are in severe linkage disequilibrium and consist of three haplotypes, het-c1/pin-c1, het-c2/pin-c2 and het-c3/pin-c3, which are equally frequent in population samples and exhibit trans-species polymorphisms. The absence of recombinant haplotypes is correlated with divergence of the het-c/pin-c intergenic sequence. Tests for positive and balancing selection at het-c and pin-c support the conclusion that both of these loci are under non-neutral balancing selection; other regions of both genes appear to be under positive selection. Our data show that the het-c2/pin-c2 haplotype emerged by a recombination event between the het-c1/pin-c1 and het-c3/pin-c3 approximately 3–12 million years ago.

Conclusions/Significance

These results support models by which loci that confer nonself discrimination form by the association of polymorphic genes with genes containing HET domains. Distinct allele classes can emerge by recombination and positive selection and are subsequently maintained by balancing selection and divergence of intergenic sequence resulting in recombination blocks between haplotypes.  相似文献   

16.
17.
Heterokaryon incompatibility among Aspergillus niger strains is a widespread phenomenon that is observed as the inability to form stable heterokaryons. The genetic basis of heterokaryon incompatibility reactions is well established in some sexual filamentous fungi but largely unknown in presumed asexual species, such as A. niger. To test whether the genes that determine heterokaryon incompatibility in Neurospora crassa, such as het-c, vib-1 and pin-c, have a similar function in A. niger, we performed a short in silico search for homologues of these genes in the A. niger and several related genomes. For het-c, pin-c and vib-1 we did indeed identify putative orthologues. We then screened a genetically diverse worldwide collection of incompatible black Aspergilli for polymorphisms in the het-c orthologue. No size variation was observed in the variable het-c indel region that determines the specificity in N. crassa. Sequence comparison showed only minor variation in the number of glutamine coding triplets. However, introduction of one of the three N. crassa alleles (het-c2) in A. niger by transformation resulted in an abortive phenotype, reminiscent of the heterokaryon incompatibility in N. crassa. We conclude that although the genes required are present and the het-c homologue could potentially function as a heterokaryon incompatibility gene, het-c has no direct function in heterokaryon incompatibility in A. niger because the necessary allelic variation is absent.  相似文献   

18.
19.
Xiang Q  Glass NL 《Genetics》2002,162(1):89-101
A non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号