首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

2.
Solution structures of the rabbit neutrophil defensin NP-5   总被引:7,自引:0,他引:7  
Solution structures of the rabbit neutrophil defensin NP-5 have been determined by 1H nuclear magnetic resonance (n.m.r.) spectroscopy and distance geometry techniques. This 33 amino acid peptide is part of the oxygen-independent mammalian defense system against microbial infection. The structures were generated from 107 n.m.r. derived inter-residue proton-proton distance constraints. A distance geometry algorithm was then used to determine the range of structures consistent with these distance constraints. These distance geometry calculations employed an improved algorithm that allowed the chirality constraints to be relaxed on prochiral centers when it was not possible to make stereo-specific assignments of protons on these centers. This procedure gave superior results compared with standard distance geometry methods and also produced structures that were more consistent with the original n.m.r. data. Analysis of the NP-5 structures shows that the overall folding of the peptide backbone is well defined by the n.m.r. distance information but that the side-chain group conformations are generally less well defined.  相似文献   

3.
D R Ripoll  F Ni 《Biopolymers》1992,32(4):359-365
Energy refinement of the structure of a linear peptide, hirudin56-65, bound to thrombin was carried out using a conformational search method in combination with restrained minimization. Five conformations originated from nmr data and distance geometry calculations having a similar global folding pattern but quite different backbone conformations were used as the starting structures. As a result of this approach, a series of low-energy conformations compatible with a set of upper and lower bounds of interproton distances determined from transferred nuclear Overhauser effects were found. A comparison among the lowest energy conformations of each run showed that the combination of energy refinement plus distance constraints led to a very well-defined structure for both the backbone and the side chains of the last 7 residues of the polypeptide. Furthermore, the low-energy conformations generated with this technique contain a segment of 3(10)-helix involving the last 5 residues at the COOH terminal end.  相似文献   

4.
The three-dimensional solution structure of reduced (CuI) plastocyanin from French bean leaves has been determined by distance geometry and restrained molecular dynamics methods using constraints obtained from 1H n.m.r. (nuclear magnetic resonance) spectroscopy. A total of 1244 experimental constraints were used, including 1120 distance constraints, 103 dihedral angle constraints and 21 hydrogen bond constraints. Stereospecific assignments were made for 26 methylene groups and the methyls of 11 valines. Additional constraints on copper co-ordination were included in the restrained dynamics calculations. The structures are well defined with average atomic root-mean-square deviations from the mean of 0.45 A for all backbone heavy atoms and 1.08 A for side-chain heavy atoms. French bean plastocyanin adopts a beta-sandwich structure in solution that is similar to the X-ray structure of reduced poplar plastocyanin; the average atomic root-mean-square difference between 16 n.m.r. structures and the X-ray structure is 0.76 A for all backbone heavy atoms. The conformations of the side-chains that constitute the hydrophobic core of French bean plastocyanin are very well defined. Of 47 conserved residues that populate a single chi 1 angle in solution, 43 have the same rotamer in the X-ray structure. Many surface side-chains adopt highly preferred conformations in solution, although the 3J alpha beta coupling constants often indicate some degree of conformational averaging. Some surface side-chains are disordered in both the solution and crystal structures of plastocyanin. There is a striking correlation between measures of side-chain disorder in solution and side-chain temperature factors in the X-ray structure. Side-chains that form a distinctive acidic surface region, believed to be important in binding other electron transfer proteins, appear to be disordered. Fifty backbone amide protons form hydrogen bonds to carbonyls in more than 60% of the n.m.r. structures; 45 of these amide protons exchange slowly with solvent deuterons. Ten hydrogen bonds are formed between side-chain and backbone atoms, eight of which are correlated with decreased proton exchange. Of the 60 hydrogen bonds formed in French bean plastocyanin, 56 occur in the X-ray structure of the poplar protein; two of the missing hydrogen bonds are absent as a result of mutations. It appears that molecular dynamics refinement of highly constrained n.m.r. structures allows accurate prediction of the pattern of hydrogen bonding.  相似文献   

5.
Diffraction data of two crystal forms (forms I and II) of [4Fe-4S] ferredoxin from Bacillus thermoproteolyticus have been collected to 0.92 A and 1.00 A resolutions, respectively, at 100 K using synchrotron radiation. Anisotropic temperature factors were introduced for all non-hydrogen atoms in the refinement with SHELX-97, in which stereochemical restraints were applied to the protein chain but not to the [4Fe-4S] cluster. The final crystallographic R-factors are 9.8 % for 7.0-0.92 A resolution data of the form I and 11.2 % for the 13.3-1.0 A resolution data of the form II. Many hydrogen atoms as well as multiple conformations for several side-chains have been identified. The present refinement has revised the conformations of several peptide bonds and side-chains assigned previously at 2.3 A resolution; the largest correction was that the main-chain of Pro1 and the side-chain of Lys2 were changed by rotating the C(alpha)-C bond of Lys2. Although the overall structures in the two crystal forms are very similar, conformational differences are observed in the two residues at the middle (Glu29 and Asp30) and the C-terminal residues, which have large temperature factors. The [4Fe-4S] cluster is a distorted cube with non-planar rhombic faces. Slight but significant compression of the four Fe-S bonds along one direction is observed in both crystal forms, and results in the D(2d) symmetry of the cluster. The compressed direction of the cluster relative to the protein is conserved in the two crystal forms and consistent with that in one of the clusters in Clostridium acidurici ferredoxin.  相似文献   

6.
Using a data set of 454 crystal structures of peptides and 80 crystal structures of non-homologous proteins solved at ultra high resolution of 1.2 A or better we have analyzed the occurrence of disallowed Ramachandran (phi, psi) angles. Out of 1492 and 13508 non-glycyl residues in peptides and proteins respectively 12 and 76 residues in the two datasets adopt clearly disallowed combinations of Ramachandran angles. These examples include a number of conformational points which are far away from any of the allowed regions in the Ramachandran map. According to the Ramachandran map a given (phi, psi) combination is considered disallowed when two non-bonded atoms in a system of two-linked peptide units with ideal geometry are prohibitively proximal in space. However, analysis of the disallowed conformations in peptide and protein structures reveals that none of the observations of disallowed conformations in the crystal structures correspond to a short contact between non-bonded atoms. A further analysis of deviations of bond lengths and angles, from the ideal peptide geometry, at the residue positions of disallowed conformations in the crystal structures suggest that individual bond lengths and angles are all within acceptable limits. Thus, it appears that the rare tolerance of disallowed conformations is possible by gentle and acceptable deviations in a number of bond lengths and angles, from ideal geometry, over a series of bonds resulting in a net gross effect of acceptable non-bonded inter-atomic distances.  相似文献   

7.
The solution structure of murine epidermal growth factor (mEGF) at pH 3.1 and a temperature of 28 degrees C has been determined from NMR data, using distance geometry calculations and restrained energy minimization. The structure determination is based on 730 conformational constraints derived from NMR data, including 644 NOE-derived upper bound distance constraints, constraints on the ranges of 32 dihedral angles based on measurements of vicinal coupling constants, and 54 upper and lower bound constraints associated with nine hydrogen bonds and the three disulfide bonds. The distance geometry interpretation of the NMR data is based on previously published sequence-specific 1H resonance assignments [Montelione et al. (1988) Biochemistry 27, 2235-2243], supplemented here with individual assignments for some side-chain amide, methylene, and isopropyl methyl protons. The molecular architecture of mEGF is the same as that described previously [Montelione et al. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5226-5230], but the structure is overall more precisely determined by a more extensive set of NMR constraints. Analysis of proton NMR line widths, amide proton exchange rates, and side-chain 3J(H alpha-H beta) coupling constants provides evidence for internal motion in several regions of the mEGF molecule. Because mEGF is one member of a large family of homologous growth factors and protein domains for which X-ray crystal structures are not yet available, the atomic coordinates resulting from the present structure refinement (which we have deposited in the Brookhaven Protein Data Bank) are important data for understanding the structures of EGF-like proteins and for further detailed comparisons of these structures with mEGF.  相似文献   

8.
A novel thyrotropin-releasing hormone (TRH) analogue, [2,4-MePro3]-TRH (2,4-MePro: 2-carboxy-2,4-methanopyrrolidine), has been synthesized using a rapid solid phase peptide synthesis method, and its conformational properties investigated by one- and two-dimensional (2D) nmr spectroscopy and by proton Overhauser measurements. Following a published approach, calibrated interproton Overhauser effects were used together with distance geometry analysis to deduce that the single conformation of the His-2,4-MePro tertiary amide bond is trans in aqueous solution. This conclusion was corroborated by 2D dipolar-correlated (NOESY) spectroscopy. A preferentially extended conformation is indicated by the nmr data, similar to that of TRH. The phi, psi conformational space of 2,4-MePro is, however, significantly different from that of trans proline and the structural consequences of these differences at the C-terminus are discussed. The distribution of histidine side-chain conformations in the TRH analogue was deduced from coupling constants and from the short-range interaction between the imidazole ring and one of the prochiral faces of the 2,4-MePro side chain.  相似文献   

9.
The solution conformations of a hybrid sequence peptide related to the bee venom peptide apamin have been determined using two-dimensional 1H-nmr. Apamin is an 18 amino acid peptide containing a C-terminal helix that is stabilized by two disulfide bonds. The deletion of one residue (K4) of the N-terminal “scaffold” region of the apamin sequence results in a helical peptide, but with a change in the pairing of cysteines to form the disulfide cross links. The new disulfide arrangement is analogous to that of the vasoconstrictor peptide endothelin. Two sets of nmr resonances were observed for the apamin-deletion (AD) peptide, due to cis-trans isomerism at the A4-P5 peptide bond. The cis isomer of the AD peptide contains a tight turn in residues 3–6, which is required for formation of the α-helix in residues 7–15. Nuclear Overhauser effects observed for the trans AD peptide are not consistent with any single unique fold, indicating the presence of conformational averaging when the peptide adopts the trans form. Distance geometry calculations on the cis AD peptide reveal an α-helical structure that appears to be more like that of apamin than the crystal structure of human endothelin, despite the reversal of the disulfide pattern in the AD peptide from that of apamin to that of endothelin.© 1997 John Wiley & Sons, Inc. Biopoly 41 : 451–460, 1997  相似文献   

10.
11.
X L Zhang  M E Selsted  A Pardi 《Biochemistry》1992,31(46):11348-11356
Two-dimensional nuclear magnetic resonance spectroscopy has been used to make resonance assignments of the proton spectra of two defensin antimicrobial peptides, human neutrophil peptide HNP-1 and rabbit neutrophil peptide NP-2. The secondary structures of these peptides were determined from analysis of the proton-proton NOEs and from the positions of slowly exchanging amide protons. Both peptides contain a long stretch of a double-stranded antiparallel beta-sheet in a hairpin conformation that contains a beta-bulge, a short region of triple-stranded beta-sheet, and several tight turns. The NMR results clearly show that HNP-1 forms a dimer or higher order aggregate in solution and that Pro8 exists as a cis peptide bond. The NMR data on these peptides are compared with NMR data for a homologous peptide NP-5 [Bach, A. C., Selsted, M. E., & Pardi, A. (1987) Biochemistry 26, 4389-4397]. Analysis of the conformation-dependent proton chemical shifts shows that it is not possible to confidently judge the structural similarity of the three defensins from chemical shift data alone. However, comparison of the 3JHN alpha coupling constants in NP-2 and NP-5 indicates that the backbone conformations for these peptides are very similar. A more detailed comparison of the solution conformations of the defensins peptides is made in the following paper in this issue where the NMR data are used as input for distance geometry and molecular dynamics calculations to determine the three-dimensional structures of HNP-1 and NP-2.  相似文献   

12.
A reduced representation model, which has been described in previous reports, was used to predict the folded structures of proteins from their primary sequences and random starting conformations. The molecular structure of each protein has been reduced to its backbone atoms (with ideal fixed bond lengths and valence angles) and each side chain approximated by a single virtual united-atom. The coordinate variables were the backbone dihedral angles phi and psi. A statistical potential function, which included local and nonlocal interactions and was computed from known protein structures, was used in the structure minimization. A novel approach, employing the concepts of genetic algorithms, has been developed to simultaneously optimize a population of conformations. With the information of primary sequence and the radius of gyration of the crystal structure only, and starting from randomly generated initial conformations, I have been able to fold melittin, a protein of 26 residues, with high computational convergence. The computed structures have a root mean square error of 1.66 A (distance matrix error = 0.99 A) on average to the crystal structure. Similar results for avian pancreatic polypeptide inhibitor, a protein of 36 residues, are obtained. Application of the method to apamin, an 18-residue polypeptide with two disulfide bonds, shows that it folds apamin to native-like conformations with the correct disulfide bonds formed.  相似文献   

13.
Complete nmr and CD studies of two cyclic tetrapeptides with disulfide bonds, Ac-L-Pen-L-Pro-D-Val-L-Cys-NH2 (1) and Ac-L-Cys-L-Pro-D-Val-L-Cys-NH2 (2) bonds have been carried out in different solvents to investigate the formation and stabilization of beta-turn structures and to determine the stereochemistry of the disulfide linkage. Both peptides have three-dimensional structures with a type II beta-turn, as derived from quantitative nuclear Overhauser effect data. The combined use of CD and nmr indicates that the dihedral angle of the disulfide bridge is different in the two peptides, although the chirality is maintained.  相似文献   

14.
Low energy conformations have been generated for melittin, pancreatic polypeptide, and ribonuclease S-peptide, both in the vicinity of x-ray structures by energy refinement and by an unconstrained search over the entire conformational space. Since the structural polymorphism of these medium-sized peptides in crystal and solution is moderate, comparing the calculated conformations to x-ray and nmr data provides information on local and global behavior of potential functions. Local analysis includes standardization calculations, which show that models with standard geometry can approximate good resolution x-ray data with less than 0.5 Å rms deviation (RMSD). However, the atomic coordinates are shifted up to 2 Å RMSD by local energy minimization, and thus 2 Å is generally the smallest RMSD value one can target in a conformational search using the same energy evaluation models. The unconstrained search was performed by a buildup-type method based on dynamic programming. To accelerate the generation of structures in the conformational search, we used the ECEPP potential, defined in terms of standard polypeptide geometry. A number of low energy conformations were further refined by relaxing the assumption of standard bond lengths and bond angles through the use of the CHARMM potential, and the hydrophobic folding energies of Eisenberg and McLachlan were calculated. Each conformation is described in terms of the RMSD from the native, hydrogen-bonding structure, solvent-acessible surface area, and the ratio of surfaces corresponding to nonpolar and polar residues. The unconstrained search finds conformations that are different from the native, sometimes substantially, and in addition, have lower conformational energies than the native. The origin of deviations is different for each of the three peptides, but in all examples the refined x-ray structures have lower energies than the calculated incorrect folds when (1) the assumption of standard bond lengths and bond angles is relaxed; (2) a small and constant effective dielectric permittivity (ε < 10) is used; and (3) the hydrophobic folding energy is incorporated into the potential. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Molecular dynamics simulations have been used to search for the accessible conformations of the melanin-concentrating hormone (MCH). The studies have been performed on native MCH and two of its peptide fragments, a cyclic MCH(5-14) fragment and a linear MCH(5-14) fragment. An analysis of the molecular dynamics trajectories of the three peptides indicates that two regions of the peptide have characteristic conformational properties that may be important for the biological activity. One is a region around Gly8, which is conformationally mobile, and the other is around Pro13, which shows unusual rigidity. The molecular dynamics simulation results are discussed in terms of backbone structural features like beta turns, side-chain interactions, and orientations of the disulfide bridge. The results of this analysis are used to suggest new analogues that will modify the conformational features of the peptide and further define the conformational requirements for activity. Finally, the results are related to nmr studies of the peptide and reveal agreements between the experimental nuclear Overhauser effect constraints and some of the accessible conformations obtained from the simulation.  相似文献   

16.
The structure of neutrophil peptide 5 in solution has recently been reported (Pardi et al., 1988). The structure determination was accomplished by using a distance geometry algorithm and 107 interproton distance constraints obtained from 2D NMR data. In each of the eight independent solutions to the distance geometry equations, the overall fold of the polypeptide backbone was identical and the root mean square (rms) deviation between backbone atoms of the superimposed structures was small (approximately 2.4 A). In this paper we report additional NP-5 structures obtained by using a new structure generation algorithm: a Monte Carlo search in torsion angle space. These structures have a large rms backbone deviation from the distance geometry structures (approximately 5.0 A). The backbone topologies differ in significant respects from the distance geometry structures and from each other. Structures are found that are pseudo mirror images of part or all of the fold corresponding to that first obtained with the distance geometry procedure. For small proteins, the problem of distinguishing the correct structure among pseudo mirror images is likely to be greater than previously recognized. When a set of test distance constraints constructed from a novel Monte Carlo structure is used as input in the distance geometry algorithm, the fold of the resulting structure does not correspond to that of the target. The results also demonstrate that the previously accepted criteria (the magnitude of the rms deviation between multiple solutions of the distance geometry equations) for defining the accuracy and precision of a peptide structure generated from NMR data are inadequate. An energetic analysis of structures corresponding to the different folding topologies has been carried out. The molecular mechanics energies obtained by minimization and molecular dynamics refinement provide sufficient information to eliminate certain alternative structures. On the basis of a careful comparison of the different trial structures with the experimental data, it is concluded that the NP-5 peptide fold which was originally reported is most consistent with the data. An alternative fold corresponding to structures with low energies and small total distance violations is ruled out because for this fold predicted NOEs are not observed experimentally.  相似文献   

17.
Allosteric disulfide bonds   总被引:5,自引:0,他引:5  
Schmidt B  Ho L  Hogg PJ 《Biochemistry》2006,45(24):7429-7433
Disulfide bonds have been generally considered to be either structural or catalytic. Structural bonds stabilize a protein, while catalytic bonds mediate thiol-disulfide interchange reactions in substrate proteins. There is emerging evidence for a third type of disulfide bond that can control protein function by triggering a conformational change when it breaks and/or forms. These bonds can be thought of as allosteric disulfides. To better define the properties of allosteric disulfides, we have analyzed the geometry and dihedral strain of 6874 unique disulfide bonds in 2776 X-ray structures. A total of 20 types of disulfide bonds were identified in the dataset based on the sign of the five chi angles that make up the bond. The known allosteric disulfides were all contained in 1 of the 20 groups, the -RHStaple bonds. This bond group has a high mean potential energy and narrow energy distribution, which is consistent with a functional role. We suggest that the -RHStaple configuration is a hallmark of allosteric disulfides. About 1 in 15 of all structurally determined disulfides is a potential allosteric bond.  相似文献   

18.
19.
The crystal structure of the variant-3 protein neurotoxin from the scorpion Centruroides sculpturatus Ewing has been refined at 1.2 A resolution using restrained least-squares. The final model includes 492 non-hydrogen protein atoms, 453 protein hydrogen atoms, eight 2-methyl-2,4-pentanediol (MPD) solvent atoms, and 125 water oxygen atoms. The variant-3 protein model geometry deviates from ideal bond lengths by 0.024 A and from ideal angles by 3.6 degrees. The crystallographic R-factor for structure factors calculated from the final model is 0.192 for 17,706 unique reflections between 10.0 to 1.2 A. A comparison between the models of the initial 1.8 A and the 1.2 A refinement shows a new arrangement of the previously poorly defined residues 31 to 34. Multiple conformations are observed for four cysteine residues and an MPD oxygen atom. The electron density indicates that disulfide bonds between Cys12 and Cys65 and between Cys29 and Cys48 have two distinct side-chain conformations. A molecule of MPD bridges neighboring protein molecules in the crystal lattice, and both MPD enantiomers are present in the crystal. A total of 125 water molecules per molecule of protein are included in the final model with B-values ranging from 11 to 52 A2 and occupancies from unity down to 0.4. Comparisons between the 1.2 A and 1.8 A models, including the bound water structure and crystal packing contacts, are emphasized.  相似文献   

20.
We report the conformational analysis by 1H nmr in DMSO and computer simulations involving distance geometry and molecular dynamics simulations of analogs of the cyclic octapeptide D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Thr6-Cys 7]-Thr8-ol (sandostatin, octreotide). The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) contain stereochemical changes in the Thr residues in positions 6 and 8, which allow us to investigate the influence of the stereochemistry within these residues on conformation and binding affinity. The molecular dynamics simulations provide insight into the conformational flexibility of these analogs. The compounds with (S)-configuration at the C(alpha) of residue 6 adopt beta-sheet structures containing a type II' beta-turn with D-Trp in the i+1 position, and these conformations are "folded" about residues 6 and 3. The structures are very similar to those observed for sandostatin, and the disulfide bridge results in a close proximity of the H(alpha) protons of residues 7 and 2, which confirms earlier observations that a disulfide bridge is a good mimic for a cis peptide bond. The compounds with (R)-configuration at the C(alpha) of residue 6 adopt considerably different backbone conformations. The structures observed for these analogs contain either a beta-turn about residue Lys and Xaa6 or a gamma-turn about the Xaa6 residue. These compounds do not exhibit significant binding to the somatostatin receptors, while the compounds with (S) configuration in position 6 bind potently to the sst2, 3, and 5 receptors. The nmr spectra of analogs with (R) or (S) configuration at the C(alpha) of residue 8 are strikingly similar to each other. We have demonstrated that the chemical shifts of protons of residues 3, 4, 5, and 6, which are part of the type II' beta-turn, and especially the effect on the Lys gamma-protons are considerably different in active molecules as compared to inactive analogs. Since the presence of a type II' beta-turn is crucial for the binding to the receptors, the chemical shifts, the amide temperature coefficients of the Thr residue and the medium strength NOE between LysNH and ThrNH can be extremely useful as an initial screening tool to separate the active molecules from inactive analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号