首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Electron transfer to rat liver microsomal cytochrome P-450 of 14 alpha-methyl group demethylation of 24,25-dihydrolanosterol (C30-sterol) has been studied with a new radio-high-performance liquid chromatography assay. The monooxygenase is dependent upon NADPH plus oxygen, insensitive to CN-, and sensitive to CO. Microsomal oxidation is also sensitive to trypsin digestion, and reactivation is dependent upon the addition of purified, detergent-solubilized cytochrome P-450 reductase. Electron transport of C-32 sterol demethylation can be fully supported by very low concentrations of NADPH (approximately 10 microM) only in the presence of saturating concentrations of NADH (approximately 200 microM) suggesting involvement of cytochrome b5-dependent electron transfer in addition to the NADPH-supported pathway. The cytochrome P-450 of 14 alpha-demethylation has been solubilized with detergents, resolved chromatographically from cytochrome P-450 reductase and cytochrome b5, and fully active C-32 demethylase reconstituted. Incubation of intact microsomes with NADH and very low concentrations of NADPH described above leads to interruption of demethylation without 14 alpha-methyl group elimination. Under these conditions, C-32 oxidation products of the C30-sterol substrate accumulate at the expense of formation of demethylated, C29-sterol products. This enzymic interruption of C-32 demethylation, accumulation of oxygenated C30-sterols, along with subsequent demethylation of the isolated C30-oxysterols under similar oxidative conditions supports the suggestion that 14 alpha-hydroxymethyl and aldehydic sterols are metabolic intermediates of sterol 14 alpha-demethylation. Only very modest inductions of the constitutive cytochrome P-450 isozyme of 14 alpha-methyl sterol oxidase can be obtained with just 2 out of 12 known, potent inducers of mammalian hepatic cytochrome P-450s. Alternatively, administration of complete adjuvant in mineral oil drastically reduces amounts of total microsomal cytochrome P-450 while activity of 14 alpha-methyl sterol oxidase is not affected dramatically. Thus, as much as 2.5-fold enhancement of C-32 oxidase specific activity is obtained when expressed per unit of cytochrome P-450.  相似文献   

2.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

3.
Cysteine conjugate S-oxidase activity, with S-benzyl-L-cysteine as substrate, was found mostly in the microsomal fractions of rat liver and kidney. In the presence of oxygen and NADPH, S-benzyl-L-cysteine is converted to S-benzyl-L-cysteine sulfoxide; no S-benzyl-L-cysteine sulfone was detected. The Vmax for S-benzyl-L-cysteine sulfoxide formation by kidney microsomes was nearly 3-fold greater than the rate measured with liver microsomes. Inclusion of catalase, superoxide dismutase, glutathione, butylated hydroxyanisole, the peroxidase inhibitor, potassium cyanide, the cytochrome P-450 inhibitors, 1-benzylimidazole and metyrapone, or a monoclonal antibody to cytochrome P-450 reductase did not inhibit the metabolic reaction. Flavin-containing monooxygenase alternate substrates, N,N-dimethylaniline, n-octylamine, and methimazole inhibited the S-oxidase activities. Analogues of S-benzyl-L-cysteine, S-methyl-L-cysteine, and S-(1,2-dichlorovinyl)-L-cysteine inhibited the S-benzyl-L-cysteine S-oxidase activities, whereas S-carboxymethyl-L-cysteine and S-benzyl-L-cysteine methyl ester had no effect. These results provide clear evidence against the involvement of reactive oxygen intermediates or cytochrome P-450 in the sulfoxidation of S-benzyl-L-cysteine and indicate that the S-oxidase activities may be associated with flavin-containing monooxygenases which exhibit selectivity in the interaction with cysteine S-conjugates.  相似文献   

4.
T Iyanagi  F K Anan  Y Imai  H S Mason 《Biochemistry》1978,17(11):2224-2230
Hepatic microsomal NADPH-cytochrome P-450 reductase was solubilized from rabbit liver microsomes in the presence of detergents and purified to homogeneity by column chromatography. The purified reductase had a molecular weight of 78 000 and contained 1 mol each of FAD and FMN per mol of enzyme. On reduction with NADPH in the presence of molecular oxygen, an 02-stable semiquinone containing one flavin free radical per two flavins was formed, in agreement with previous work on purified trypsin-solubilized reductase. The reduction of oxidized enzyme by NADPH, and autoxidation of NADPH-reduced enzyme by air, proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The reductase reduced cytochrome P-450 (from phenobarbital-treated rabbits) and cytochrome P-448 (from 3-methylcholanthrene-treated rabbits). The rate of reduction of cytochrome P-450 increased in the presence of a substrate, benzphetamine, but that of cytochrome P-448 did not.  相似文献   

5.
Anthranilamide was slightly hydroxylated by a reconstituted rat liver microsomal monooxygenase system with NADPH, but a large amount of hydrogen peroxide was formed with a consumption of NADPH during the reaction. Superoxide dismutase stimulated the hydroxylation by depressing the hydrogen peroxide formation, in that there was a reverse correlation between the two effects due to the dismutase. In addition, a trace of 3-hydroxyanthranilamide, one of the products, not only stimulated NADPH-dependent hydrogen peroxide formation via NADPH-cytochrome c (P-450) reductase, but also inhibited the reduction of cytochrome P-450 by NADPH in the reconstituted system. These effects of 3-hydroxyanthranilamide were also diminished by superoxide dismutase.  相似文献   

6.
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid.  相似文献   

7.
A reconstituted monooxygenase system containing a form of cytochrome P-450, termed P-450(14)DM, and NADPH-cytochrome P-450 reductase, both purified from yeast microsomes, catalyzed the conversion of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-01) to a sterol metabolite in the presence of NADPH and molecular oxygen. This conversion did not occur anaerobically or when either P-450(14)DM, the reductase, or NADPH was omitted from the system. In both free and trimethylsilylated forms, this metabolite showed a relative retention time (relative to lanosterol) of 1.10 in gas chromatography on OV-17 columns. Comparison of its mass spectrum and retention time with those of lanosterol and 4,4-dimethylzymosterol (4,4-dimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol) indicated that the metabolite was 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol. Upon aerobic incubation of microsomes from semianaerobically grown yeast cells in the presence of NADPH and cyanide, endogenous lanosterol was converted to 4,4-dimethylzymosterol. This metabolism was inhibited by CO, metyrapone, SKF-525A, and antibodies to P-450(14)DM. It is concluded that in yeast microsomes lanosterol is 14 alpha-demethylated by a P-450(14)DM-containing monooxygenase system to give rise to 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol, which is then reduced to 4,4-dimethylzymosterol by an NADPH-linked reductase.  相似文献   

8.
Approximately 90% of the NADPH- and NADH-dependent O-demethylation of p-nitroanisole (PNA) in the hepatic microsomal fraction from phenobarbital (PB)-treated rabbits and in the pulmonary microsomal fraction from untreated rabbits is catalyzed by the same isozyme of cytochrome P-450. This isozyme of cytochrome P-450 catalyzes less than 60% of this reaction in the hepatic microsomal fraction from untreated rabbits. Antibodies to NADPH-cytochrome P-450 reductase inhibit NADPH-dependent metabolism of p-nitroanisole by about 90% but have no effect on NADH-dependent metabolism. Hepatic NADPH-dependent metabolism of pNA and reduction of cytochrome c are inhibited to the same extent with varying amounts of antibodies to NADPH cytochrome P-450 reductase. The same relationship between inhibition of monooxygenase and reductase activities is observed for the hepatic and pulmonary metabolism of benzphetamine and 7-ethoxycoumarin. In contrast, the relationship between inhibition of the pulmonary NADPH-dependent metabolism of pNA and reductase activity is biphasic; at 75% inhibition of reductase activity, metabolism of pNA is inhibited by less than 25%. For NADH-dependent metabolism of pNA, our results indicate that both electrons are transferred to cytochrome P-450 from cytochrome b5.  相似文献   

9.
The commonly used food-additive antioxidants, butylated hydroxyanisole and butylated hydroxytoluene, are inhibitors of the hepatic microsomal mono-oxygenase system, as assayed by benzpyrene hydroxylase activity and demethylase activities. Generally, butylated hydroxyanisole is a more potent inhibitor than butylated hydroxytoluene. Both inhibitors bind to cytochrome P-450 and induce “type I” binding spectra. Cytochrome P-450 is tentatively assigned as the site of inhibition.  相似文献   

10.
Incorporation of detergent-solubilized cytochrome b5 into phenobarbital-induced rabbit liver microsomal fractions decelerates hexobarbital-dependent reduction of ferric cytochrome P-450; this is accompanied by retardation of NADPH utilization and H2O2 formation in the assay media. Integration of manganese-substituted cytochrome b5 into the microsomal preparations fails to affect these parameters. Analysis of the cytochrome P-450 reduction kinetics in the presence of increasing amounts of cytochrome b5 reveals a gradual augmentation of the amplitude of slow-phase electron transfer at the expense of the relative contribution of the fast phase; finally, a slow, apparently monophasic reaction persists. This defect in enzymatic reduction is not due to detergent effects and also does not seem to reflect cytochrome b5-induced perturbation of anchoring of NADPH-cytochrome c(P-450) reductase to cytochrome P-450. Experiments with the highly purified cytochrome P-450 isozyme LM2, in which amino acid residue(s) close to the heme edge had undergone suicidal inactivation through covalent attachment of chloramphenicol metabolite(s) do not exclude the possibility that cytochrome b5 and reductase might compete for a common electron transmission site on the terminal acceptor. Hence, the inhibitory action of cytochrome b5 on the reduction of ferric cytochrome P-450 is tentatively attributed to partial substitution of the former pigment for reductase in direct transport of the first electron to the monooxygenase.  相似文献   

11.
Leukotriene B4 (LTB4), a potent chemotactic agent, was catabolized to 20-hydroxyleukotriene B4 (20-OH-LTB4) by the 150,000 x g pellet (microsomal fraction) of human neutrophil sonicate. The reaction required molecular oxygen and NADPH, and was significantly inhibited by carbon monoxide, suggesting that a cytochrome P-450 is involved. The neutrophil microsomal fraction showed a carbon monoxide difference spectrum with a peak at 450 nm in the presence of NADPH or dithionite, indicating the presence of a cytochrome P-450. The addition of LTB4 to the microsomal fraction gave a type-I spectral change with a peak at around 390 nm and a trough at 422 nm, indicating a direct interaction of LTB4 with the cytochrome P-450. The dissociation constant of LTB4, determined from the difference spectra, is 0.40 microM, in agreement with the kinetically determined apparent Km value for LTB4 (0.30 microM). Such a spectral change was not observed with prostaglandins A1, E1 and F2 alpha or lauric acid, none of which inhibited the LTB4 omega-hydroxylation. The inhibition of the LTB4 omega-hydroxylation by carbon monoxide was effectively reversed by irradiation with monochromatic light of 450 nm wavelength. The photochemical action spectrum of the light reversal of the inhibition corresponded remarkably well with the carbon monoxide difference spectrum. These observations provide direct evidence that the oxygen-activating component of the LTB4 omega-hydroxylase system is a cytochrome P-450. Ferricytochrome c inhibited the hydroxylation of LTB4 and the inhibition was fortified by cytochrome oxidase. An antibody raised against rat liver NADPH-cytochrome-P-450 reductase inhibited both LTB4 omega-hydroxylase activity and the NADPH-cytochrome-c reductase activity of human neutrophil microsomal fraction. These observations indicate that NADPH-cytochrome-P-450 reductase acts as an electron carrier in LTB4 omega-hydroxylase. On the other hand, an antibody raised against rat liver microsomal cytochrome b5 inhibited the NADH-cytochrome-c reductase activity but not the LTB4 omega-hydroxylase activity of human neutrophil microsomal fraction, suggesting that cytochrome b5 does not participate in the LTB4-hydroxylating system. These characteristics indicate that the isoenzyme of cytochrome P-450 in human neutrophils, LTB4 omega-hydroxylase, is different from the ones reported to be involved in omega-hydroxylation reactions of prostaglandins and fatty acids.  相似文献   

12.
Purified liver microsomal NADPH-cytochrome P-450 reductase is able to catalyze the activation of [14C]ronidazole to metabolite(s) which bind covalently to protein. Like the reaction catalyzed by microsomes, protein alkylation catalyzed by the reductase is (1) sensitive to oxygen, (2) requires reducing equivalents, (3) is inhibited by sulfhydryl-containing compounds and (4) is stimulated several fold by either flavin mononucleotide (FMN) or methytlviologen. A cytochrome P-450 dependent pathway of ronidazole activation can be demonstrated as judged by the inhibition of the reaction by carbon monoxide, metyrapone and 2,4-dichloro-6-phenylphenoxyethylamine but the involvement of specific microsomal cytochrome P-450 isozymes has not been definitively established. Milk xanthine oxidase is also capable of catalyzing ronidazole activation. Polyacrylamide sodium dodecyl sulfate (SDS)-gel electrophoresis reveals that the reactive intermediate(s) of ronidazole does not alkylate proteins selectively.  相似文献   

13.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

14.
7-Hydroxyphenoxazin-3-one, commonly known as resorufin, strongly inhibits benzo(a)pyrene-induced mutation in the Ames bacterial reversion assay. The antimutagenic mechanism is due in part to redox cycling of resorufin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen. The diversion of electrons from cytochrome P-450 enzymes results in a large decrease in the percent of benzo(a)pyrene metabolized by rat liver microsomes as measured by HPLC. Resorufin stimulated a non-stoichiometric consumption of NADPH and was reduced in S-9 or microsomal solutions. These processes were sensitive to dicumarol and NADP inhibition to different degrees in each liver fraction. This suggests two pathways are involved in resorufin redox cycling, one involving DT-diaphorase and the other with NADPH cytochrome P-450 reductase. Oxygen was shown to be an electron acceptor for S-9 mediated resorufin redox cycling, but was not consumed by a microsomal solution in the presence of resorufin and NADPH.  相似文献   

15.
Preincubation of mouse liver microsomes with NADPH resulted in malondialdehyde formation, destruction of cytochrome P-450, and decreased rates of aniline hydroxylation and N-demethylation of aminopyrine and ethylmorphine. These phenomena were more pronounced in phosphate than in Tris buffer. No reduction in rates of NADPH-linked oxidation of ethanol or in the activities of NADPH oxidase and NADPH-cytochrome c reductase was observed. While addition of EDTA to preincubation mixtures prevented lipid peroxidation, loss of cytochrome P-450, and inactivation of the drug-metabolizing capacity of microsomes, it did not alter ethanol oxidation rates and the activities of NADPH oxidase and NADPH-cytochrome c reductase. These findings argue against the involvement of cytochrome P-450 in the microsomal ethanol-oxidizing system.  相似文献   

16.
The mechanism by which 2-bromo-4'-nitroacetophenone (BrNAP) inactivates cytochrome P-450c, which involves alkylation primarily at Cys-292, is shown in the present study to involve an uncoupling of NADPH utilization and oxygen consumption from product formation. Alkylation of cytochrome P-450c with BrNAP markedly stimulated (approximately 30-fold) its rate of anaerobic reduction by NADPH-cytochrome P-450 reductase, as determined by stopped flow spectroscopy. This marked stimulation in reduction rate is highly unusual in that Cys-292 is apparently not part of the heme- or substrate-binding site, and its alkylation by BrNAP does not cause a low spin to high spin state transition in cytochrome P-450c. Under aerobic conditions the rapid oxidation of NADPH catalyzed by alkylated cytochrome P-450c was associated with rapid reduction of molecular oxygen to hydrogen peroxide via superoxide anion. The intermediacy of superoxide anion, formed by the one-electron reduction of molecular oxygen, established that alkylation of cytochrome P-450c with BrNAP uncouples the catalytic cycle prior to introduction of the second electron. The generation of superoxide anion by decomposition of the Fe2+ X O2 complex was consistent with the observations that, in contrast to native cytochrome P-450c, alkylated cytochrome P-450c failed to form a 430 nm absorbing chromophore during the metabolism of 7-ethoxycoumarin. Alkylation of cytochrome P-450c with BrNAP did not completely uncouple the catalytic cycle such that 5-20% of the catalytic activity remained for the alkylated cytochrome compared to the native protein depending on the substrate assayed. The uncoupling effect was, however, highly specific for cytochrome P-450c. Alkylation of nine other rat liver microsomal cytochrome P-450 isozymes with BrNAP caused little or no increase in hydrogen peroxide formation in the presence of NADPH-cytochrome P-450 reductase and NADPH.  相似文献   

17.
1. Concentration-dependent effects of vitamin K1, coenzyme Q10, butylated hydroxytoluene, nor-dihydroguaiaretic acid and Fe-initiated lipid peroxidation on redox cycling of vitamin K3 were studied in mouse liver microsomes in vitro. 2. The antioxidants (butylated hydroxytoluene, nor-dihydroguaiaretic acid) caused apparent non-competitive inhibition of vitamin K3 redox cycling. 3. Vitamin K1 and coenzyme Q10 caused competitive inhibition of the redox cycling (Ki = 33 and 46 microM, respectively). 4. Fe-initiated microsomal lipid peroxidation caused irreversible decrease of one-electron reduction of vitamin K3. 5. The role of NADPH:cytochrome P-450 reductase along with mechanisms of these inhibitions are discussed.  相似文献   

18.
The stoichiometry of NADPH oxidation in rabbit liver microsomes was studied. It was shown that in uncoupled reactions cytochrome P-450, besides O2- generation catalyzes direct two- and four-electron reduction of O2 to produce H2O2 and water, respectively. With an increase in pH and ionic strength, the amount of O2 reduced via an one-electron route increases at the expense of the two-electron reaction. In parallel, with a rise in pH the steady-state concentration of the oxy-complex of cytochrome P-450 increases, while the synergism of NADPH and NADH action in the H2O2 formation reaction is replaced by competition. The four-electron reduction is markedly accelerated and becomes the main pathway of O2 reduction in the presence of a pseudo-substrate--perfluorohexane. Treatment of rabbit with phenobarbital, which induces the cytochrome P-450 isozyme specific to benzphetamine results in a 2-fold increase in the degree of coupling of NADPH and benzphetamine oxidation. The experimental results suggest that the ratio of reactions of one- and two-electron reduction of O2 is controlled by the ratio of rates of one- and two-electron reduction of cytochrome P-450. In the presence of pseudo-substrates cytochrome P-450 acts predominantly as a four-electron oxidase; one of possible reasons for the uncoupling of microsomal monooxygenase reactions is the multiplicity of cytochrome P-450 isozymes.  相似文献   

19.
We have isolated a protein factor from rat liver which stimulates anthranilamide hydroxylation by the microsomes in the presence of NADPH and oxygen and showed this factor to contain Cu and Zn and to have superoxide dismutase activity [Biochim. Biophys. Acta 365, 148-157 (1974)]. In the present study, this protein factor was confirmed to be a superoxide dismutase (SOD) by comparison of the recovery of SOD activity with that of anthranilamide hydroxylation-stimulating activity at each step of its purification, by inhibition of SOD activity with NaCN and hydrogen peroxide (H2O2), and by recovery of the SOD activity of the protein factor after reconstitution with Cu2+ and/or Zn2+. At a given SOD activity level, there was no difference among the rat liver SOD, Cu,Zn-SOD from bovine erythrocytes, and Mn-SOD from Serratia marcescens in their ability to stimulate anthranilamide hydroxylation not only by rat liver microsomes, but also by the reconstituted cytochrome P-450-containing monooxygenase system. Rat liver SOD stimulated anthranilamide hydroxylation by the reconstituted system in proportion to its amount below a protein concentration of 1 microgram/ml. In anthranilamide hydroxylation by the reconstituted system without SOD, only a slight hydroxylase activity was found at the initial stage of the reaction and a marked increase in the amounts of NADPH oxidized and H2O2 formed was observed after a lag time. In the presence of rat liver SOD, however, the hydroxylase activity was markedly and continuously increased almost proportionally to reaction time with a concomitant decrease in the amounts of NADPH oxidized and H2O2 formed. In addition, a trace of 3-OH anthranilamide, one of the products, not only stimulated NADPH-dependent H2O2 formation in the reconstituted system, but also inhibited the apparent reduction of cytochrome P-450 by NADPH in the reconstituted system. These effects of 3-OH anthranilamide were diminished by rat liver SOD. When a trace of 3-OH anthranilamide were added to a system composed of NADPH-cytochrome c (P-450) reductase and NADPH, H2O2 formation and NADPH oxidation were markedly stimulated. However, on addition of 3-OH anthranilamide to the system containing rat liver SOD, no stimulation on either H2O2 formation or NADPH oxidation was found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
2-Dimethylamino-3-chloro-1,4-naphthaquinone (DCNQ) was used to study oxygen and substrate activation in microsomal system. DCNQ was shown to be bound to microsomal cytochrome P-450 as a type I substrate; its N-demethylation was catalyzed by cytochrome P-450. Cytochrome P-450 and NADPH-cytochrome P-450 reductase are capable of DCNQ reduction to semi- and hydroquinones. The OH-radical formed in the presence of DCNQ, NADPH and reductase was detected, using a spin trap (5,5-dimethylpyrroline-N-oxide). The OH-radical formation was shown to be stimulated by the Fe-EDTA complex. Using the OH-radical scavengers (mannitol, N-butanol, alpha-naphthol) and the catalase inhibitor sodium azide, it was shown that the OH-radical participates in microsomal oxidation of DCNQ and aminopyrine. It was assumed that in the course of microsomal oxidation the reduced DCNQ is responsible for: i) stimulation of molecular oxygen reduction to H2O2; ii) reduction of Fe ions (Fe3+----Fe2+) which cause the decomposition of H2O2 in the Fenton reaction resulting in the formation of a strong oxidizing agent--a hydroxyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号