首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of enzymic antioxidant system, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase in defense reaction to environmental stress evoked by air and soil pollution, was seasonally studied on three populations of Scots pine (Pinus sylvestris L.) growing on experimental areas close two industrial objects in Poland. The first of them (Luboón) is localised near a phosphate fertiliser factory, the second (Głogów) near a copper foundry, and control stand is placed in Kórnik. Głogów is the most polluted site, where in 1998 monthly mean daily concentrations was: SO2 - 17 μg·m−3, NOx- 12 μg·m−3 and dust containing heavy metals (Cu, Pb, Cd) - 29 μg·m−3. Trees in Luboń were influenced for many years by high concentration of SO2 and fluor compounds. Few years ago emissions were markedly reduced, but changes in the soil (low pH and high concentration of aluminium ions) still influence the growth of trees. In needles of two populations: 3 (Russia) and 8 (Poland), from the polluted sites Głogów and Luboń, activities of superoxide dismutase (SOD) and guaiacol peroxidase (PO) were significantly higher compared to Kórnik. However, in one population (16 - Slovakia), such dependance was not evident. Activity of ascorbate peroxidase (AP) measured in winter was also higher in needles from polluted sites. The results indicated that the sensitivity of free radical scavenging system in Scots pine needles differs among populations.  相似文献   

2.
Current and previous year needles from three 16 years-old populations of Scots pine (Pinus sylvestris L.) trees were seasonally collected at the three experimental areas: Luboń- close to the phosphate fertiliser factory, Głogów — close to the copper foundry and Kórnik — control site. Głogów is the most polluted site, where at 1998 monthly mean daily concentrations of different pollutants were: SO2 - 17 μg·m−3, NOx - 12 μg·m−3 and dust containing heavy metals as Cu, Pb, Cd - 29 μg·m−3. Trees growing in Luboń were influenced for many years by high concentration of SO2 and fluor compounds. A few years ago emissions were markedly reduced, but low pH of soil and high concentration of aluminium ions still influence the growth of trees. Seasonal changes of ascorbate and thiol content were observed in each needle class and population, with the maximum in the winter and minimum in the summer. In needles from trees growing on polluted sites higher level of ascorbic acid and thiols comparing to control site was observed. Significant differences appeared in each population of Scots pine growing under higher pollution stress in the Głogów site. In needles from trees growing in Luboń significant differences in ascorbic acid and thiols content were evidently less numerous. Needles from polluted sites in some seasons contained significantly more malondialdehyde (MDA) and those was more frequent in Głogów than in Luboń. The results indicated that in the Głogów site trees are more influenced by pollution stress than in Luboń and the defense reaction measured as an increase of the antioxidant level is more evident.  相似文献   

3.
Copper deficiency causes more salient pathologic changes in the heart than in the liver of rats. Although oxidative stress has been implicated in copper deficiency-induced pathogenesis, little is known about the selective toxicity to the heart. Therefore, we examined the relationship between the severity of copper deficiency-induced oxidative damage and the capacity of antioxidant defense in heart and liver to investigate a possible mechanism for the selective cardiotoxicity. Weanling rats were fed a purified diet deficient in copper (0.4 μg/g diet) or one containing adequate copper (6.0 μg/g diet) for 4 weeks. Copper deficiency induced a 2-fold increase in lipid peroxidation in the heart (thiobarbituric assay) but did not alter peroxidation in the liver. The antioxidant enzymatic activities of superoxide dismutase, catalase, and glutathione peroxidase were, respectively, 3-, 50- and 1.5-fold lower in the heart than in the liver, although these enzymatic activities were depressed in both organs by copper deficiency. In addition, the activity of glutathione reductase was 4 times lower in the heart than in the liver. The data suggest that a weak antioxidant defense system in the heart is responsible for the relatively high degree of oxidative damage in copper-deficient hearts.  相似文献   

4.
Coenzyme Q10 is an endogenous lipid soluble antioxidant. Because oxidant stress may exacerbate some complications of diabetes mellitus, this study investigated the effects of subacute treatment with exogenous coenzyme Q10 (10 mg/kg/day, i.p. for 14 days) on tissue antioxidant defenses in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione contents, and activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited increased oxidative stress and disturbances in antioxidant defense when compared with normal controls. Treatment with the lipophilic compound coenzyme Q10 reversed diabetic effects on hepatic glutathione peroxidase activity, on renal superoxide dismutase activity, on cardiac lipid peroxidation, and on oxidized glutathione concentration in brain. However, treatment with coenzyme Q10 also exacerbated the increase in cardiac catalase activity, which was already elevated by diabetes, further decreased hepatic glutathione reductase activity, augmented the increase in hepatic lipid peroxidation, and further increased glutathione peroxidase activity in the heart and brain of diabetic animals. Subacute dosing with coenzyme Q10 ameliorated some of the diabetes-induced changes in oxidative stress. However, exacerbation of several diabetes-related effects was also observed.  相似文献   

5.
Because some complications of diabetes mellitus may result from oxidative damage, we investigated the effects of subacute treatment (10mg/kg/day, intraperitoneal [ip], for 14 days) with the antioxidant isoeugenol on the oxidant defense system in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free radical-detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with isoeugenol reversed diabetic effects on hepatic glutathione peroxidase activity and on oxidized glutathione concentration in brain. Treatment with the lipophilic compound isoeugenol also decreased lipid peroxidation in both liver and heart of normal animals and decreased hepatic oxidized glutathione content in both normal and diabetic rats. Some effects of isoeugenol treatment, such as decreased activity of hepatic superoxide dismutase and glutathione reductase in diabetic rats, were unrelated to the oxidative effects of diabetes. In heart of diabetic animals, isoeugenol treatment resulted in an exacerbation of already elevated activities of catalase. These results indicate that isoeugenol therapy may not reverse diabetic oxidative stress in an overall sense.  相似文献   

6.
In light of evidence that some complications of diabetes mellitus may be caused or exacerbated by oxidative damage, we investigated the effects of subacute treatment with the antioxidant quercetin on tissue antioxidant defense systems in streptozotocin-induced diabetic Sprague-Dawley rats (30 days after streptozotocin induction). Quercetin, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, was administered at a dose of 10mg/kg/day, ip for 14 days, after which liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Treatment of normal rats with quercetin increased serum AST and increased hepatic concentration of oxidized glutathione. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Quercetin treatment of diabetic rats reversed only the diabetic effects on brain oxidized glutathione concentration and on hepatic glutathione peroxidase activity. By contrast, a 20% increase in hepatic lipid peroxidation, a 40% decline in hepatic glutathione concentration, an increase in renal (23%) and cardiac (40%) glutathione peroxidase activities, and a 65% increase in cardiac catalase activity reflect intensified diabetic effects after treatment with quercetin. These results call into question the ability of therapy with the antioxidant quercetin to reverse diabetic oxidative stress in an overall sense.  相似文献   

7.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

8.
Glutathione peroxidase is one of the principal antioxidant defense enzymes in human spermatozoa, but it requires oxidized glutathione to be reduced by glutathione reductase using NADPH generated in the pentose phosphate pathway. We investigated whether flux through the pentose phosphate pathway would increase in response to oxidative stress and whether glutathione reductase was required to protect sperm from oxidative damage. Isotopic measurements of the pentose phosphate pathway and glycolytic flux, thiobarbituric acid assay of malondialdehyde for lipid peroxidation, and computer-assisted sperm analysis for sperm motility were assessed in a group of normal, healthy semen donors. Applying moderate oxidative stress to human spermatozoa by adding cumene hydroperoxide, H(2)O(2), or xanthine plus xanthine oxidase or by promoting lipid peroxidation with ascorbate increased flux through the pentose phosphate pathway without changing the glycolytic rate. However, adding higher concentrations of oxidants inhibited both the pentose phosphate pathway and glycolytic flux. At concentrations of 50 microg/ml or greater, the glutathione reductase-inhibitor 1,3-bis-(2-chloroethyl) 1-nitrosourea decreased flux through the pentose phosphate pathway and blocked the response to cumene hydroperoxide. It also increased lipid peroxidation and impaired the survival of motility in sperm incubated under 95% O(2). These data show that the pentose phosphate pathway in human spermatozoa can respond dynamically to oxidative stress and that inhibiting glutathione reductase impairs the ability of sperm to resist lipid peroxidation. We conclude that the glutathione peroxidase-glutathione reductase-pentose phosphate pathway system is functional and provides an effective antioxidant defense in normal human spermatozoa.  相似文献   

9.
Contaminant-related changes in antioxidative processes in the freshwater crustacea Daphnia magna exposed to model redox cycling contaminant were assessed. Activities of key antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferases and levels of lipid peroxidation measured as thiobarbituric acid-reactive substances (TBARS) and lipofucsin pigment content were determined in D. magna juveniles after being exposed to sublethal levels of menadione, paraquat, endosulfan, cadmium and copper for 48 h. Results denoted different patterns of antioxidant enzyme responses, suggesting that different toxicants may induce different antioxidant/prooxidant responses depending on their ability to produce reactive oxygen species and antioxidant enzymes to detoxify them. Low responses of antioxidant enzyme activities for menadione and endosulfan, associated with increasing levels of lipid peroxidation and enhanced levels of antioxidant enzyme activities for paraquat, seemed to prevent lipid peroxidation, whereas high levels of both antioxidant enzyme activities and lipid peroxidation were found for copper. For cadmium, low antioxidant enzyme responses coupled with negligible increases in lipid peroxidation indicated low potential for cadmium to alter the antioxidant/prooxidant status in Daphnia. Among the studied enzymes, total glutathione peroxidase, catalase and glutathione S-transferase appeared to be the most responsive biomarkers of oxidative stress.  相似文献   

10.
Copper toxicity is associated with formation of reactive oxygen species, which are capable to oxidize proteins. The selective removal of the latter by the 20S proteasome is considered an essential part of the cell antioxidant defense system. The aim of the present study was to investigate whether peptidase activities of rat liver proteasomes were affected by chronic (40 mg CuSO(4)/rat/daily with the drinking water for 2 weeks) and acute (20 mg/kg CuSO(4), s.c.) copper treatment. To evaluate the role of proteasome, its inhibitor MG132 was also used. The degree of copper-induced oxidative stress (OS), established by measuring lipid peroxidation, protein oxidation, and cellular glutathione level, as well as activities of antioxidant enzymes--catalase, superoxide dismutase, and gultathionine peroxidase, depended on the mode of copper administration. Chronic copper administration (mild oxidative stress) did not affect proteasome activities, whereas acute copper treatment (severe oxidative stress) caused a decline in chymotryptic- and tryptic-like activities. The treatment of copper-loaded animals with MG132 did not change copper-induced alterations in the tested indices, except an additional increase in protein oxidation and inhibition of glutathionine peroxidase activity. The results suggested that the in vivo copper-induced oxidative stress was associated with changes in the catalytic activity of proteasome.  相似文献   

11.
Diabetes mellitus and its complications are associated with elevated oxidative stress, leading to much interest in antioxidant compounds as possible therapeutic agents. Two new classes of antioxidant compounds, the pyrrolopyrimidines and the 21-aminosteroids, are known to inhibit lipid peroxidation and other biomolecular oxidation. We hypothesized that in the presence of excess oxidants or the impaired antioxidant defense seen in diabetes mellitus, administration of antioxidants such as these may reverse the effects of diabetes on antioxidant parameters. This study measured the effects of subchronic (14 day) treatment with a pyrrolopyrimidine (PNU-104067F) or a 21-aminosteroid (PNU-74389G) in normal and diabetic Sprague-Dawley rats. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, concentrations of oxidized and reduced glutathione, and lipid peroxidation were used as measures of antioxidant defense in liver, kidney, heart, and brain tissue. In normal rats, the only effect was a 43% increase in cardiac lipid peroxidation after treatment with PNU-104067F. In diabetic rats, the only reversals of the effects of diabetes were a 30% decrease in hepatic glutathione peroxidase activity after PNU-74389G treatment and a 33% increase in cardiac glutathione disulfide concentration after PNU-104067F treatment. In contrast to these effects, increased cardiac glutathione peroxidase and catalase activities, increased brain glutathione peroxidase activity, increased hepatic lipid peroxidation, decreased hepatic glutathione content, and decreased hepatic catalase activity were seen in diabetic rats, reflecting an exacerbation of the effects of diabetes.  相似文献   

12.
Traditional Mediterranean diet includes the halophyte Crithmum maritimum L. (Apiaceae) which can be found in the coastline of the Balearic Islands but also inland. Both areas differed in the environmental conditions, mainly in salinity which can affect the oxidative status of this species. The aim was to evaluate the antioxidant enzyme activities, polyphenols and the lipid peroxidation in leaves of wild C. maritimum growing in a natural coastal area influenced by marine salinity and an inland area without marine influence. The activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase as well as polyphenol and reduced glutathione content were significantly higher in the samples from coastline population, whereas no significant differences were found in glutathione reductase activity and in malondialdehyde levels. The production of H2O2 was also significantly higher in the population from coastline. In conclusion, C. maritimum adapt their antioxidant defense machinery to the different salinity conditions, avoiding the instauration of oxidative stress.  相似文献   

13.
Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.  相似文献   

14.
The effect of heavy metal deposition onto soil from a copper smelter on lipid peroxidation and antioxidant enzyme activity in the fine roots of two poplars (Populus nigra L. and Populus deltoides Bartr. ex Marsch) was analyzed. The subjects were mature trees growing in real environments. In both analyzed species, heavy metals stimulated the overproduction of free radicals in fine roots (measured as malondialdehyde level), which was directly proportional to advancing senescence. In young fine roots, heavy metals caused a decrease in guaiacol peroxidase activity and presumably disturbed the lignification process. Catalase was highly sensitive to the presence of heavy metals in the soil. In contrast, ascorbate peroxidase and glutathione reductase activities were unaffected by heavy metals. In the case of superoxide dismutase, a clear increase in enzyme activity was observed only in P. nigra under drought conditions, whereas it was inhibited in polluted stands.  相似文献   

15.
Changes in the activity of so-called oxidative stress defensive enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and heme oxygenase, as well as changes in lipid peroxidation and reduced glutathione levels, were measured in guinea pig and rat liver after acute cobalt loading. Cobalt chloride administration produced a much higher degree of lipid peroxidation in guinea pig than in rat liver compared with the control animals. The intrahepatic reduced glutathione content in control guinea pig was higher than that in rat, but was equally decreased in both species after cobalt administration. The enzymatic scavengers of free radicals, superoxide dismutase, catalase and glutathione peroxidase, were significantly decreased in rat liver after acute cobalt loading, and as a compensatory reaction, the heme oxygenase activity was increased (seven-fold). In guinea pig liver, only superoxide dismutase activity was depleted in response to cobalt-induced oxidative stress, while catalase and glutathione peroxidase were highly activated and the heme oxygenase activity was dramatically increased (13-fold). It is assumed that enhanced heme oxygenase activity may have important antioxidant significance by increasing the liver oxidative-stress defense capacity.  相似文献   

16.
We investigated genotoxicity and oxidative stress in the gills of Labeo rohita exposed to 33.6, 67.1, and 100.6 mg L–1of cadmium chloride at 96 h. Genotoxicity was assessed using single cell gel electrophoresis whereas oxidative stress was monitored through lipid peroxidation induction and antioxidant response parameters, namely reduced glutathione (GSH), glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase (CAT) activities. Significant (p < .05) effect of both concentration and time of exposure was observed on the extent of DNA damage in treated fish. Similarly, malondialdehyde content, level of GSH, and activities of antioxidant enzymes were significantly elevated in treated groups, except CAT. The increased DNA damage and lipid peroxidation (LPO) content along with fluctuation in antioxidant defense system in fish indicated the interaction of cadmium (Cd) with DNA repair processes and production of reactive oxygen species. Thus, Cd is liable for induction of LPO, alteration of antioxidant defenses, and DNA damage in gills of L. rohita.  相似文献   

17.
Mechanisms of burn-related cardiac dysfunction may involve defects in mitochondria. This study determined 1) whether burn injury alters myocardial mitochondrial integrity and function; and 2) whether an antioxidant vitamin therapy prevented changes in cardiac mitochondrial function after burn. Sprague-Dawley rats were given a 3 degrees burn over 40% total body surface area and fluid resuscitated. Antioxidant vitamins or vehicle were given to sham and burn rats. Mitochondrial and cytosolic fractions were prepared from heart tissues at several times postburn. In mitochondria, lipid peroxidation was measured to assess oxidative stress, mitochondrial outer membrane damage and cytochrome-c translocation were determined to estimate mitochondrial integrity, and activities of SOD and glutathione peroxidase were examined to evaluate mitochondrial antioxidant defense. Cardiac function was measured by Langendorff model in sham and burn rats given either vitamins or vehicle. Twenty-four hours postburn, mitochondrial outer membrane damage was progressively increased to approximately 50%, and cytosolic cytochrome-c gradually accumulated to approximately three times more than that measured in shams, indicating impaired mitochondrial integrity. Maximal decrease of mitochondrial SOD activity occurred 8 h postburn ( approximately 63.5% of shams), whereas maximal decrease in glutathione peroxidase activity persisted 2-24 h postburn ( approximately 60% of shams). In burn animals, lipid peroxidation in cardiac mitochondria increased 30-50%, suggesting burn-induced oxidative stress. Antioxidant vitamin therapy prevented burn-related loss of membrane integrity and antioxidant defense in myocardial mitochondria and prevented cardiac dysfunction. These data suggest that burn-mediated mitochondrial dysfunction and loss of reactive oxygen species defense may play a role in postburn cardiac dysfunction.  相似文献   

18.
In this study, we evaluated the oxidant status and antioxidant defense capabilities of the heart during the course of Trypanosoma cruzi infection and disease development in a murine model system. Our data show that the extent of protein carbonylation and lipid peroxidation is increased in the heart, but not the skeletal muscle, of infected mice. The level of oxidative injury biomarkers in the myocardium consistently increased with chronic disease severity. The antioxidant defense constituted by catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GSR), and reduced glutathione was increased in murine heart and skeletal tissue in response to the stress of T. cruzi infection. After the initial burst, CAT, GPx, and GSR remained unresponsive to the severity of chronic tissue damage in chagasic hearts. The cardiac level of Mn(2+) superoxide dismutase (MnSOD) was diminished in chagasic mice. Our data suggest that the host responds to acute injuries by activating antioxidant defenses that are of sufficient magnitude to scavenge the reactive oxidants in skeletal tissue. The myocardia of infected mice, however, sustain increased oxidative injuries with disease progression. We surmise that MnSOD deficiencies, resulting in the increased release of mitochondrial free radicals, lead to sustained oxidative stress that exceeds the cardiac antioxidant defense capacity and contribute to persistent oxidative damage in chagasic myocardium.  相似文献   

19.
Recent studies have reported oxidative damage due to bisphosphonate (BP) in various cancer tissues and neurons, although basic fibroblast growth factor (bFGF) induced antioxidant effects in the cells. The bFGF may modulate the BP-induced oxidative stress in oral epithelium of rats. This study was undertaken to explore possible beneficial antioxidant effects of bFGF on oxidative stress induced by BP in oral epithelium of rats. Twenty-eight rats were equally divided into four groups. The first group was used as control. The second, third and fourth groups intraperitoneally received BP (zoledronic acid), bFGF and BP + bFGF. At the end of 10 weeks, the rats were sacrificed, and oral epithelium samples were taken for analyses. In BP group, the lipid peroxidation levels were increased in the oral epithelium, while the activities of glutathione peroxidase (GSH-Px) and the concentrations of total antioxidant status (TAS) were decreased. In rats treated with bFGF, lipid peroxidation levels decreased, and the activities of GSH-Px and concentrations of TAS improved in the oral epithelium. However, zinc and copper levels were decreased in the oral epithelium by BP and bFGF treatments. Concentrations of vitamin E and reduced glutathione in the samples did not change in the groups. In conclusion, treatment with bFGF modulated the antioxidant redox system and reduced the oral epithelium oxidative stress induced by BP. However, zinc and copper levels were decreased by BP and bFGF treatments.  相似文献   

20.
The effects of DOCA-salt hypertensive treatment on hepatic glutathione-dependent defense system, antioxidant enzymes, lipid peroxidation, mixed function oxidase and UDP-glucuronyl transferase activities were investigated in male Sprague Dawley rats.Compared with controls, DOCA-salt hypertensive rats had lower body weights (linked to liver hypertrophy). Mixed function oxidase and p-nitrophenol-UGT activities were not affected by the treatment but a significant lower rate of the glucuronoconjugation rate of bilirubin (p < 0.001) was observed in DOCA-salt hypertensive rats. While cytosolic glutathione contents and glutathione reductase activity were not affected, glutathione peroxidase (p < 0.001), glutathione transferase (p < 0.001) and catalase (p < 0.01) activities were decreased and associated with higher malondialdehyde contents (p < 0.001) in treated rats. The imbalance in liver antioxidant status (increasing generation of cellular radical species), associated with increases in lipid peroxidation, suggests that oxidative stress might be directly related to arterial hypertension in DOCA-salt treated male Sprague Dawley rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号