首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The labeling of a number of polysaccharides found in grapefruit (Citrus paradisi) was achieved by feeding labeled myo-inositol to ripening grapefruit through their cut fruit stem, and allowing 4 days for the metabolism of label. The pectic polysaccharides were isolated by successive extraction of the labeled grapefruit with 80% ethanol, chloroform-methanol (1:1) and finally with 0.2 M Na2 EDTA to solubilize pectic polysaccharides. The incorporation of label from myo-inositol into galacturonosyl, arabinosyl, xylosyl and galactosyl residues of pectic polysaccharides via myo-inositol oxidation pathway was demonstrated. Ion exchange chromatography of these labeled pectic polysaccharides using DE-52 cellulose resulted in the elution of eight totally or partially resolved polysaccharides with increasing salt concentration. The results suggest that, like other plant tissues, the myo-inositol oxidation pathway is also operative in ripening grapefruit and this metabolic pathway could be successfully utilized to achieve labeling of a number of pectic polysaccharides.  相似文献   

2.
The pectic substances, located primarily in the middle lamella between cells in higher plant tissues, are complex polysaccharides. They include the negatively charged rhamnogalacturonans, and the neutral arabinogalactans I and II and l-arabinans. These polysaccharides add viscosity to juices but may also form hazes and precipitates and retard maximum recovery of juices from the fruit. The rhamnogalacturonans are degraded by the enzymes pectin methylesterase and polygalacturonase normally present in plant tissues and by these enzymes and pectate lyase in microbially derived commercial pectic enzymes added during processing. The presence of a?abinofuranosidase, which degrades l-arabinans, in commercial pectic enzyme preparations, can cause haze formation in juices such as apple and pear.  相似文献   

3.
There was an ionic interaction between acidic polysaccharides (APS) and proteins at the pH range in which APS were negatively charged and proteins were positively charged, and in enzymes the interaction was detected as a change in the enzyme activity. At pH 4.7, acid phosphatase (pI, 5.4), alpha-glucosidase (pI, 5.7), and beta-glucosidase (pI, 7.3) were inhibited by APS to various extents. On the other hand, alpha-glucosidase and alkaline phosphatase (pI, 4.5) were not inhibited by APS at pH 6.8 and 9.8, respectively, most of these two enzymes being negatively charged at the respective pHs. Sulfated polysaccharides combined with hemoglobin (pI, 6.8 to approximately 7.0) by an ionic bond at pH 2 to make hemoglobin unsusceptible to proteolysis by pepsin, but polyuronides which were not charged at this pH did not affect hydrolysis of hemoglobin.  相似文献   

4.
Unripe Spanish pears ( Pyras commanis L. ev. Blanquilla ) were ripened at 18°C for 5 and 10 days. Softening of the cortical tissues was associated with swelling of parenchyma cell walls from 1 to more than 5 μm in 10 day ripe pears, by which time the pears were over ripe. However, there was little indication of cell separation and the middle lamella could be detected between most cell walls. Furthermore, cell separation was constrained by regions rich in plasmodesmata where wall swelling was prevented. Parenchyma cells in the 500 μm of tissue underlying the epidermis did not undergo ripening-related changes to the same extent as those of the cortex. These cells, in combination with a sub-epidermal layer of lignified sclereid clusters, constituted a relatively tough and protective skin. Ripening of the cortical tissues was associated with a depletion of alcohol-insoluble pectic polysaccharides, as indicated by the decrease in arabinose and uronic acid. Analysis of alcohol-insoluble cell wall preparations enriched in either parenchyma or sclereid cell walls indicated that this change was predominantly associated with the parenchyma walls. Such changes were less prominent in the peel. The decrease in pectic polysaccharides was accompanied by an increase in their solubility. During ripening, the sclereid clusters of the cortex continued in develop, as indicated by an increase in their size and yield of cell wall xylose and glucose. Cortical parenchyma cells radiating from the sclereids were firmly attached to the lignified cells. This was due to lignification extending from the sclereids into the primary walls of the parenchyma cells. We conclude that dissolution of pectic polysaccharides is one of several factors which determine softening during ripening of Spanish pears.  相似文献   

5.
Immunoprofiling of pectic polysaccharides   总被引:3,自引:0,他引:3  
An assay is described for the rapid identification of unbranched homogalacturonan and branched components occurring in samples of pectic polysaccharides using anti-pectin monoclonal antibodies. The assay involves the immunodetection of pectic polysaccharides after separation into two components during the application in small volumes to nitrocellulose. In this system, homoglacturonan-rich components migrate further on the nitrocellulose in contrast to pectic components with abundant side chains, resulting in a clear separation and discrete rings of distinct polysaccharides that can be identified using specific antibodies. This procedure is also directly applicable to preparations of plant material without the need for isolation of pectic polysaccharides.  相似文献   

6.
Chemical analysis of grapefruit (Citrus paradisi) pectic polysaccharides demonstrated that galacturonic acid constitutes 78% by weight of the total carbohydrates found. The remaining 22% was accounted for by a number of sugars which include galactose, glucose, arabinose, xylose, and mannose and, by weight, galactose accounted for almost 50% of the total neutral sugar components found in these pectic polysaccharides. Treatment of pectic polysaccharides with galactose oxidase followed by reduction of oxidized galactose residues with tritiated potassium borohydride resulted in the labeling of pectic polysaccharides. Analysis of the labeled polysaccharides demonstrated that of the total radioactivity incorporated more than 90% was recovered in the galactose residues. These results clearly demonstrate the successful utilization of the galactose oxidase/tritiated potassium borohydride method in labeling plant pectic polysaccharide.  相似文献   

7.
Pectic substances were extracted from the vegetables with oxalate buffer of pH 4.25 and, after saponification, fractionated into two components, weakly acidic pectic polysaccharide (WAP) and pectic acid, by DEAE-cellulose and Sephadex G-100 chromatographies. The galacturonic acid content (17.3~25.8%) of WAPs was much lower than that of pectic acids, though the neutral sugar compositions of both pectic substances were almost the same. The arabinose-galactose side chains were found to be very long or highly branched in WAPs compared with those in pectic acids.

All the WAPs were appreciably hydrolyzed by exo- and endopolygalacturonases. The limited-degradation products (the residual polysaccharides; i.e., the rhamnogalacturonan segments) obtained by endopolygalacturonase from both WAPs and pectic acids showed a similar behavior on Sephadex G-100 and Sepharose CL-4B gel filtrations; each of the rhamnogalacturonan segments was eluted in the void volume of the Sephadex G-100 column. From these results, we concluded that WAPs are probably an inherent pectic component of the cell walls of the vegetables.  相似文献   

8.
Cell walls of a storage organ (potato tubers) showed autolysis-likeactivity. After 20 h of incubation in water at 35°C, thepurified cell walls released approximately 10% of the cell walldry weight as pectic polysaccharides containing about 40% ofthe total galacturonic acid present in the cell walls. Virtuallyno neutral polysaccharides were found in the soluble fraction.The pectic polysaccharides were heterogeneous in galacturonicacid content and had a very large molecular size. The releaseof pectic polymers was caused neither by enzymatic reactionsnor by ß-elimination, but by a chelation of Ca2+ and/orother metal ions during the cell wall isolation. Ultrastructuralobservations clearly showed that these pectic polysaccharideswere released not from the middle lamella, but from the primarycell wall adjacent to the plasma membrane. These results indicatethat nearly half of cell wall pectic polysaccharides are heldin the primary wall only by Ca2+- and/or other metal-bridgesand that these pectic polymers are not associated with the middlelamella. (Received March 20, 1989; Accepted October 3, 1989)  相似文献   

9.
The structure and rheological properties of water-soluble polysaccharides from industrialized mango pulp were investigated. Soluble fraction (SF) 2 was heterogeneous on high performance size exclusion chromatography, giving two peaks as determined by multi-angle laser light scattering and refractive index detectors. The presence of starch in SF2 was demonstrated by a positive iodine reaction and by 13C nuclear magnetic resonance (NMR) spectroscopy. The presence of pectic polysaccharides was shown by a calorimetric method, 13C-NMR spectroscopy and carboxyl reduction. The main pectic polysaccharide was polygalacturonic acid; type I rhamnogalacturonan was also detected. Analysis of the rheological properties of SF2 showed a pseudoplastic behavior up to 3 g x l(-1). 'Creep and recovery' tests and analysis performed under a dynamic state revealed a weak gel character for solutions at concentrations of 15, 20 and 30 g x l(-1).  相似文献   

10.
The polymers of onion cell walls are known to be modified by heating, but there is little information on the effects of extrusion-cooking. This work investigates the effects of extrusion-cooking on the physico-chemical characteristics and microstructure of cell walls of onion waste in relation to cell-wall chemistry. Cell-wall material from white fleshy outer scale leaves of waste onions was extruded at a range of moisture contents, barrel temperatures and screw speeds through a co-rotating twin-screw extruder. Extrusion-cooking had little effect on the carbohydrate composition of cell-wall material. However, it resulted in an increase in the solubility of pectic polymers and hemicelluloses, and this was accompanied by an increase in swelling of the cell-wall material. The degree of solubility of the pectic polysaccharides was largely dependent on the barrel temperature, and involved depolymerisation.  相似文献   

11.
Direct ELISA was performed using normal human sera and human colostrum, to analyse the presence of antibodies which react with pharmacologically active pectic polysaccharides isolated from plants used in traditional Japanese herbal (Kampo) medicine. All sera and colostrum were shown to contain IgM, IgG, IgA and secretory IgA class antibodies which react with the active pectic polysaccharides to different degrees. The reacting IgG antibody in normal human serum recognized the ramified regions (rhamnogalacturonan core with carbohydrate side-chains) of the pharmacologically active pectic polysaccharides as the active sites for complement-activating activity. Correlation analysis indicated that a significant and positive correlation was observed between reactivity with the reacting antibody of IgG class and the degree of complement-activating activity of the active polysaccharides.The reacting IgG class antibody, which was purified from normal human serum by affinity chromatography on bupleuran 2IIc (a pharmacologically active pectic polysaccharide from the roots of Bupleurum falcatum)-immobilized Sepharose, showed cross-reactivity not only with some other pharmacologically active pectic polysaccharides from other medicinal herbs but also with autoantigens such as single-strand DNA, myosin and tublin from mammals.  相似文献   

12.
Two oppositely charged polysaccharides, alginate and a lactose-modified chitosan (chitlac), have been used to prepare dilute binary polymer mixtures at physiological pH (7.4). Because of the negative charge on the former polysaccharide and the positive charge on the latter, polyanion-polycation complex formation occurred. A complete miscibility between the two polysaccharides was attained in the presence of both high (0.15 M) and low (0.015 M) concentrations of simple 1:1 supporting salt (NaCl), as confirmed by turbidity measurements; phase separation occurred for intermediate values of the ionic strength (I). The binary solutions were further characterized by means of light scattering, specific viscosity, and fluorescence quenching measurements. All of these techniques pointed out the fundamental role of the electrostatic interactions between the two oppositely charged polysaccharides in the formation of nonstoichiometric polyelectrolyte soluble complexes in dilute solution. Fluorescence depolarization (P) experiments showed that the alginate chain rotational mobility was impaired by the presence of the cationic polysaccharide when 0.015 M NaCl was used. Moreover, upon addition of calcium, the P values of the binary polymer mixture in 0.015 M NaCl increased more rapidly than that of an alginate solution without chitlac, suggesting an efficient crowding of the negatively charged alginate chains caused by the polycation.  相似文献   

13.
Native cellulose model films containing both amorphous and crystalline cellulose I regions were prepared by spin-coating aqueous cellulose nanofibril dispersions onto silica substrates. Nanofibrils from wood pulp with low and high charge density were used to prepare the model films. Because the low charged nanofibrils did not fully cover the silica substrates, an anchoring substance was selected to improve the coverage. The model surfaces were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of nanofibril charge density, electrolyte concentration, and pH on swelling and surface interactions of the model film was studied by quartz crystal microbalance with dissipation (QCM-D) and AFM force measurements. The results showed that the best coverage for the low charged fibrils was achieved by using 3-aminopropyltrimethoxysilane (APTS) as an anchoring substance and hence it was chosen as the anchor. The AFM and XPS measurements showed that the fibrils are covering the substrates. Charge density of the fibrils affected the morphology of the model surfaces. The low charged fibrils formed a network structure while the highly charged fibrils formed denser film structure. The average thickness of the films corresponded to a monolayer of fibrils, and the average rms roughness of the films was 4 and 2 nm for the low and high charged nanofibril films, respectively. The model surfaces were stable in QCM-D swelling experiments, and the behavior of the nanofibril surfaces at different electrolyte concentrations and pHs correlated with other studies and the theories of Donnan. The AFM force measurements with the model surfaces showed well reproducible results, and the swelling results correlated with the swelling observed by QCM-D. Both steric and electrostatic forces were observed and the influence of steric forces increased as the films were swelling due to changes in pH and electrolyte concentration. These films differ from previous model cellulose films due to their chemical composition (crystalline cellulose I and amorphous regions) and fibrillar structure and hence serve as excellent models for the pulp fiber surface.  相似文献   

14.
Loquat fruit (Eriobotrya japonica L. cv. Algor) was dissected to give the following tissue zones: epidermis or epicarp, flesh or mesocarp, integument (a thin layer surrounding the seed cotyledons), seed testa, kernel and hairy receptacle. The alcohol insoluble residues (AIRs) from all these tissues were proved to be free of starch, except loquat kernel which on a fresh weight basis contained about 34% of starch. AIRs were analysed for moisture, ashes, protein, lignin and the component sugars were released by two hydrolytic procedures which helped to distinguish the sugars from non-cellulosic polysaccharides and cellulose. Their major component polysaccharides were inferred to be pectic polysaccharides since all AIRs were very rich in sugars such as uronic acids, arabinose and galactose. Pectic polysaccharides contributed up to 70% of total cell wall polysaccharides in the edible flesh of the loquat fruit. Important differences in the degree of branching, degree of esterification and in the amounts of Ca and Mg associated with pectic polysaccharides were detected among pectic polymers depending on the loquat tissue zone. These compositional and structural differences may be related to the role that these pectic polymers play within the tissues which form the loquat fruit.  相似文献   

15.
Olive fruits at the green, cherry and black stages were used to investigate the structural and microstructural changes in tissues during ripening. Scanning electron microscopy (SEM) tissue fracture of green olives resulted in cell wall breakage of epicarp and mesocarp cells. Tissue fracture resulted in fewer broken cells in cherry than in green olives and even less in black olive tissues. Cell separation occurred in the middle lamella region in some of the cells of the cherry fruit and in most of the black olive cells. Solubilization and loss of pectic polysaccharides, mainly the arabinan moiety, and glucuronoxylans occurred in the green to cherry stages. The pulp cell wall constituent polysaccharides, pectic polysaccharides, cellulose, glucuronoxylans and xyloglucans, were degraded and/or solubilized at the cherry to black ripening stages. The resultant depolymerization of the pectic polymers, especially those of the middle lamella region, was consistent with the progressive cell separation at the different ripening stages by SEM. This showed that partial solubilization of pectic, hemicellulosic and cellulosic polysaccharides within the cell wall matrix weakened the cell wall structures, preventing the breaking of cells when the tissues were fractured.  相似文献   

16.
不同品种苹果采后后熟软化过程中细胞壁多糖的降解   总被引:2,自引:0,他引:2  
以2种苹果为试材,提取了不同贮藏时期果实的细胞壁物质和8种细胞壁多糖组分,并采用气相色谱法分析了细胞壁多糖组分的单糖组成。结果表明,在贮藏过程中,‘金星’苹果果肉的硬度下降明显,在贮藏第10天前后出现明显的乙烯释放量高峰,而耐贮藏性‘富士’苹果在贮藏期间只释放极少量的乙烯。‘金星’苹果的Na2CO3-1溶性果胶多糖组分的减少尤为显著。这些结果表明,苹果果实Na2CO3-1溶性果胶多糖组分侧链成分的酶降解,是引起苹果细胞壁多糖网络结构的变化,进而导致果实软化的重要原因之一。  相似文献   

17.
1. Polymers were solubilized from the cell walls of parenchyma from mature runner-bean pods with minimum degradation by successive extractions with cyclohexane-trans-1,2-diamine-NNN'N'-tetra-acetate (CDTA), Na2CO3 and KOH to leave the alpha-cellulose residue, which contained cross-linked pectic polysaccharides and Hyp-rich glycoproteins. These were solubilized with chlorite/acetic acid and cellulase. The polymers were fractionated by anion-exchange chromatography, and fractions were subjected to methylation analysis. 2. The pectic polysaccharides differed in their ease of extraction, and a small proportion were highly cross-linked. The bulk of the pectic polysaccharides solubilized by CDTA and Na2CO3 were less branched than those solubilized by KOH. There was good evidence that most of the pectic polysaccharides were not degraded during extraction. 3. The protein-containing fractions included Hyp-rich and Hyp-poor glycoproteins associated with easily extractable pectic polysaccharides, Hyp-rich glycoproteins solubilized with 4M-KOH+borate, the bulk of which were not associated with pectic polysaccharides, and highly cross-linked Hyp-rich glycoproteins. 4. Isodityrosine was not detected, suggesting that it does not have a (major) cross-linking role in these walls. Instead, it is suggested that phenolics, presumably linked to C-5 of 3,5-linked Araf residues of Hyp-rich glycoproteins, serve to cross-link some of the polymers. 5. There were two main types of xyloglucan, with different degrees of branching. The bulk of the less branched xyloglucans were solubilized by more-concentrated alkali. The anomeric configurations of the sugars in one of the highly branched xyloglucans were determined by 13C-n.m.r. spectroscopy. 6. The structural features of the cell-wall polymers and complexes are discussed in relation to the structure of the cell walls of parenchyma tissues.  相似文献   

18.
Konno, H., Yamasalu, Y. and Katoh, K. 1987. Fractionation andpartial characterization of pectic polysaccharides in cell wallsfrom liverwort (Marchantia polymorpha) cell cultures.—Jexp. Bot. 38: 711–722. Pectic polysaccharides were extracted from the starch-free cellwall preparation of cell suspension cultures of Marchantia polymorpha.The polysaccharides were fractionated by DEAE-Sephadex A-50ion-exchange chromatography yielding the five fractions, andthe degree of polymerization and glycosyl composition determinedfor each fraction. The neutral rich and acidic pectic polymerswere depolymerized by purified endoglucanase (l,4-ß-D-glucan4-glucanohydrolase, E.C. 3.2.1.4 [EC] .) and endopolygalacturonase(poly-l,4--Dgalacturonide glycanohydrolase, E.C. 3.2.1.15 [EC] ),respectively. The degraded pectic fractions were fractionatedby gel filtration chromatography on Bio-Gel A-5m and Bio-GelP-2, and glycosyl composition determined for each fraction.The results indicate that pectic polysaccharides contain glucose-richpolymer, rhamnogalacturonan and homogalacturonan in a ratioof 1:4:0–6. In addition, pectic polysaccharides were releasedas five pectic fragments from the cell walls by purified endopectatelyase (poly-l,4--D-galacturonide lyase, E.C. 4.2.2.2 [EC] ). Basedon the analysis of glycosyl composition of each fragment, thepectic polysaccharides of Marchantia cell walls are characterized Key words: Cell suspension culture, cell wall, liverwort, Marchantia polymorpha, pectic polysaccharides  相似文献   

19.
Willats WG  McCartney L  Knox JP 《Planta》2001,213(1):37-44
Pectic polysaccharides are a complex set of macromolecules of the primary cell wall matrix with distinct structural domains. The biosynthesis, organisation and function of these domains within cell wall matrices are poorly understood. An immersion immunofluorescence labelling technique was developed for the in-situ analysis of pectic polysaccharides at the surface of seeds and seedlings of Arabidopsis thaliana (L.) Heynh., and used to investigate the occurrence of pectic homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) epitopes. Seed mucilage appeared to consist of two regions: a highly methyl-esterified HG was a major component throughout the mucilage, while an inner region with relatively low porosity was stabilized by calcium-based HG cross-linking. The small size and transparency of Arabidopsis roots allowed the occurrence of pectic HG and RG-I epitopes at root surfaces to be directly determined on whole-mount preparations. Pectic epitopes were not distributed evenly over root surfaces and were notably absent from lateral root apices and from the surface of root hairs. The use of defined antibody probes in the immersion immunolabelling protocol will be useful for the analysis of the influence of growth conditions and genetic factors on pectic polysaccharides in Arabidopsis. Received: 13 July 2000 / Accepted: 15 September 2000  相似文献   

20.
M. C. Jarvis 《Planta》1992,187(2):218-220
Near-isotropic stresses were generated within collenchyma cell walls of celery (Apium graveolens L.) by exchanging K+ for Ca2+ ions, varying the ionic strength and de-esterifying the pectic carboxyl groups, treatments that changed the free-charge density of the pectic polysaccharides. The collenchyma strands swelled radially with increasing free-charge density but there was very little longitudinal swelling. Depolymerising the pectins by -elimination also induced much more radial than longitudinal swelling. Supported by earlier work on Nitella, these results indicate that pectins control the interlamellar spacing in cell walls and hold them together across their thickness, particularly against turgor stresses tending to delaminate the walls at the cell corners.The author thanks J.S.G. Reid (Department of Biological Sciences, University of Stirling, UK) and M. Demarty (SCUEOR, University of Rouen, France) for critical comments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号