首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (K M for K 0 + =3.5mm;J max=30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl-dependent (Na++K+) cotransport system (K M for K 0 + =6.8mm;J max=20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+1Na+2Cl, the exchange of K i + for K 0 + . The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

2.
Cultured Ehrlich ascites tumor cells equilibrate d-glucose via a carrier mechanism with a Km and V of 14 mM and 3 μmol/s per ml cells, respectively. Cytochalasin B competitively inhibits this carrier-mediated glycose transport with an inhibition constant (Ki) of approx. 5·10?7 M. Cytochalasin E does not inhibit this carrier function. With cytochalasin B concentrations up to 1·10?5 M, the range where the inhibition develops to practical completion, three discrete cytochalasin B binding sites, namely L, M and H, are distinguished. The cytochalasin B binding at L site shows a dissociation constant (Kd) of approx. 1·10-6 M, represents about 30% of the total cytochalasin B binding of the cell (8·106 molecules/cell), is sensitively displaced by cytochalasin E but not by d-glucose, and is located in cytosol. The cytochalasin B binding to M site shows a Kd of 4–6·10?7 M, represents approx. 60% of the total saturable binding (14·106 molecules/cell), is specifically displaced by d-glucose with a displacement constant of 15 mM, but not by l-glucose, and is insensitive to cytochalasin E. The sites are membrane-bound and extractable with Triton X-100 but not by EDTA in alkaline pH. The cytochalasin B binding at H site shows a Kd of 2–6 · 10?8 M, represents less than 10% of the total sites (2 · 106 molecules/cell), is not affected by either glucose or cytochalasin E and is of non-cytosol origin. It is concluded that the cytochalasin B binding at M site is responsible for the glucose carrier inhibition by cytochalasin B and the Ehrlich ascites cell is unique among other animal cells in its high content of this site. Approx. 16-fold purification of this site has been achieved.  相似文献   

3.
4.
Calcium transport in intact Ehrlich ascites tumor cells   总被引:9,自引:0,他引:9  
  相似文献   

5.
The possible presence and properties of the Ca2+-dependent K+ channel have been investigated in the Ehrlich ascites tumor cell. The treatment with ionophore A23187 + CA2+, propranolol or the electron donor system ascorbate-phenazine methosulphate, all of which activate that transport system in the human erythrocyte, produces in the Ehrlich cell a net loss of K+ (balanced by the uptake of Na+) and a stimulation of both the influx and the efflux of 86Rb. These effects were antagonized by quinine, a known inhibitor of the Ca2+-dependent K+ channel in other cell systems, and by the addition of EGTA to the incubation medium. Ouabain did not have an inhibitory effect. These results suggests that the Ehrlich cell possesses a Ca2+-dependent K+ channel whose characteristics are similar to those described in other cell systems.  相似文献   

6.
Native vesicles isolated from Ehrlich ascites tumor cells accumulate glutamine by means of Na+-dependent transport systems; thiocyanate seems to be the more effective anion. The apparent affinity constant for the process was 0.38 mM. The Arrhenius plot gave an apparent activation energy of 12.3 kJ/mol. The structural analogs of glutamine, acivicin (2.5 mM) and azaserine (2.5 mM), inhibited the net uptake by 67 and 70%, respectively. The sulfhydryl reagents mersalyl, PCMBS, NEM, and DTNB also inhibited net uptake, suggesting that sulfhydryl groups may be involved in the activity of the carrier protein. A strong inhibition was detected when the vesicles were incubated in the presence of alanine, cysteine, or serine; in addition, histidine, but not glutamate or leucine, had a negative effect on glutamine transport.  相似文献   

7.
8.
Previous studies have shown that mediated Cl- transport which occurs by at least two processes (Cl- -dependent cation cotransport and Cl- self-exchange) becomes progressively inhibited when extracellular Cl- exceeds about 60 mM (Hoffmann et al., 1979). To account for this type of kinetic behavior, that is, self-inhibition, an anion transport system possessing two sites, a high affinity transport site and a lower affinity modifier site is suggested (Dalmark, 1976). In the present experiments we have attempted to determine which of the mediated transport pathways is susceptible to self-inhibition by studying the dependence of the steady state Cl- flux on the extracellular Cl- concentration and how DIDS, an inhibitor of Cl- self-exchange, and H + affect this relationship. Addition of DIDS to Ehrlich cells results in inhibition of Cl- transport at every Cl- concentration tested (40-150 mM). Moreover, the Cl- flux/Cl- concentration relationship no longer exhibits self-inhibition, suggesting that this phenomenon is a characteristic of the Cl- self-exchanger rather than of the Cl- -dependent cation cotransport system. Lowering the extracellular pH (pHo) from 7.35 to 5.30 stimulates Cl- transport by a process that saturates with respect to [H +]. Half-maximal stimulation occurs at pHo 6.34. A comparison of the kinetic parameters, Ks and Jmax, calculated from the ascending limb of the Cl- flux/Cl- concentration curve at pHo 7.30 to those at pHo 5.50 show that the values for Ks are almost identical (23.6 mM and 21.3 mM, respectively), while the values for Jmax [22.2 mEq/Kg dry wt) X min] differ by only 15%. This finding along with the observation that DIDS completely blocks H + stimulation of Cl- transport is compatible with the suggestion that H + interact at the modifer site of the Cl- self-exchanger and thereby prevents self-inhibition.  相似文献   

9.
Summary Taurine influx is inhibited and taurine efflux accelerated when the cell membrane of Ehrlich ascites tumor cells is depolarized. Taurine influx is inhibited at acid pH partly due to the concomitant depolarization of the cell membrane partly due to a reduced availability of negatively charged free carrier. These results are in agreement with a 2Na, 1Cl, 1taurine cotransport system which is sensitive to the membrane potential due to a negatively charged empty carrier. Taurine efflux from Ehrlich cells is stimulated by addition of LTD4 and by swelling in hypotonic medium. Cell swelling in hypotonic medium is known to result in stimulation of the leukotriene synthesis and depolarization of the cell membrane. The taurine efflux, activated by cell swelling, is dramatically reduced when the phospholipase A2 is inhibited indirectly by addition of the anti-calmodulin drug pimozide, or directly by addition of RO 31-4639. The inhibition is in both cases lifted by addition of LTD4. The swelling-induced taurine efflux is also inhibited by addition of the 5-lipoxygenase inhibitors ETH 615-139 and NDGA. It is concluded that the swelling-induced activation of the taurine leak pathway involves a release of arachidonic acid from the membrane phospholipids and an increased oxidation of arachidonic acid into leukotrienes via the 5-lipoxygenase pathway. LTD4 seems to act as a second messenger for the swelling induced activation of the taurine leak pathway either directly or indirectly via its activation of the Cl channels, i.e., via a depolarization of the cell membrane.  相似文献   

10.
Summary The Ehrlich tumor cell possesses and anion-cation cotransport system which operates as a bidirectional exchanger during the physiological steady state. This cotransport system, like that associated with the volume regulatory mechanism (i.e. coupled net uptake of Cl+Na+ and/or K+) is Cl-selective and furosemide-sensitive, suggesting the same mechanism operating in two different modes. Since Na+ has an important function in the volume regulatory response, its role in steady-state cotransport was investigated. In the absence of Na+, ouabain-insensitive K+ and DIDS-insensitive Cl transport (KCl cotransport) are low and equivalent to that found in 150mm Na+ medium containing furosemide. Increasing the [Na+] results in parallel increases in K+ and Cl transport. The maximum rate of each (18 to 20 meq/(kg dry wt)·min) is reached at about 20mm Na+ and is maintained up to 55mm. Thus, over the range 1 to 55mm Na+ the stoichiometry of KCl cotransport is 11. In contrast to K+ and Cl, furosemide-sensitive Na+ transport is undetectable until the [Na+] exceeds 50mm. From 50 to 150mm Na+, it progressively rises to 7 meq/(kg dry wt)·min, while K+ and Cl transport decrease to 9 and 16 meq/(kg dry wt)·min, respectively. Thus, at 150mm Na+ the stoichiometric relationship between Cl, Na+ and K+ is 211. These results are consistent with the proposal that the Cl-dependent cation cotransport system when operating during the steady state mediates the exchange of KCl for KCl or NaCl for NaCl; the relative proportion of each determined by the extracellular [Na+].  相似文献   

11.
Calcium transport and distribution in Ehrlich mouse ascites tumor cells   总被引:1,自引:0,他引:1  
Data from isotopic uptake experiments were used to measure calcium fluxes and compartment sizes in ascites tumor cells. The data were analyzed with two kinetic models, A and B. In 80% of the experiments model A, which is based on one exchangeable calcium compartment, was rejected in favor of Model B, which predicts two exchangeable compartments. A statistical evaluation of the model's performance, when fit to the experimental data was used to select between the two models. The results show that calcium was distributed between three cellular compartments in the ratio, non-exchangeable (88%): rapidly exchanging (7%): slowly exchanging (5%). The undirectional fluxes suggested that calcium transport could be described as a series system with the temporal sequence: environment ? rapidly exchanging ? slowly exchanging.  相似文献   

12.
The effect of extracellular Pi and arsenate on Pi-transport in Ehrlich ascites tumor cells has been studied. Pi-transport can be described by Michaelis-Menten kinetics; the maximal flux equal to 44 mmoles (kg cell water)?1 hour?1 and Km equal to 3.3 × 10?4 M . Arsenate is a competitive inhibitor of Pi-transport with an inhibition constant (Ki) equal to 2.41 × 10?3 M . The data support the hypothesis that cellular Pi is regulated by the cell membrane through the mediation of a carrier system.  相似文献   

13.
The steady state transport and distribution of chloride between the intracellular and extracellular phases was investigated when the extracellular chloride concentration was varied by isosmotic replacement with nitrate, bromide and acetate. The results of these experiments show that chloride transport, measured by uptake of 36Cl, is sensitive to the replacement anion. In the presence of nitrate, chloride transport is a linear function of the extracellular chloride concentration. The relationship between chloride transport and extracellular chloride in the presence of bromide is concave upward which suggests that this anion inhibits chloride movement. However, when acetate replaces chloride, the relationship between chloride transport and extracellular chloride is concave downward. The chloride distribution ratio of cells incubated in 145-155mM chloride medium is 0.386 and is not effected by the replacement of chloride with nitrate, bromide or acetate. These findings are consistent with the assertion that chloride transport is composed of two parallel pathways, a diffusional plus a saturating, mediated component. Of the total chloride flux (9.1 mmoles Cl-/kg dry weight per minute) measured in chloride medium (145-155 mM Cl-), the mediated component represents 40% and the diffusional component 60%.  相似文献   

14.
15.
A regulatory function of the cell membrane in controlling the cytoplasmic level of Pi has been proposed, and in Ehrlich ascites tumor cells an active influx of primary phosphate has been reported in the literature. In the present study, Ehrlich cells were incubated at 1.5--50 mM extracellular Pi at pH 7.4 (Pi mainly secondary phosphate) and at pH 6.0 (mainly primary phosphate), and the measured cell Pi was compared with the value expected from a passive distribution of Pi. At a low extracellular Pi concentration the cell Pi was 3--6 mumol/g or even more. It is suggested that a major part of this cell Pi can be accounted for by enzymic release of Pi during the sampling procedure. If this interpretation is correct, the present results show that both ionic species of Pi are in electrochemical equilibrium across the cell membrane at steady state. Moreover, in vivo the concentration of free Pi in the cytosol will presumably be maintained at a steady-state level of about 0.4 mM, one order of magnitude below the directly measured values. This implies that the ratio [ATP]/[ADP][Pi] which is important in the regulation of energy metabolism, is higher than reported in the literature.  相似文献   

16.
We have investigated the effects of the amino reactive reagent, 2,4,6-trinitrobenzene sulfonic acid (TNBS) on anion transport (chloride and sulfate) and on the K+ content of Ehrlich ascites tumor cells. Incubation of tumor cells with TNBS (3 mM or 10 mM) results in a time dependent uptake of this molecule. Tightly bound TNBS caused a loss of K+ as well as inhibition of sulfate uptake. Although sulfate transport was inhibited by tightly bound TNBS (40% inhibition with 20 nmoles bound per 107 cells), reversibly bound TNBS exerted much greater inhibition. Kinetic analysis of sulfate transport in the presence and absence of TNBS suggests that: (1) tightly bound TNBS exerts a competitive inhibition by occupying membrane sites remote from the specific transport site, (2) TNBS reversibly interacts with a separate site also in a competitive fashion. Increasing amounts of tightly bound TNBS resulted in an enhanced chloride influx. However, reversibly bound TNBS was without effect. These results are in contrast to the effect of TNBS on sulfate transport and show that TNBS, at least in this cell type, is not a general inhibitor of anion transport.  相似文献   

17.
In an effort to determine whether the Na+-dependent Pi transport system of Ehrlich ascites tumor cells exhibits specificity for H2PO4- or HPO4(-2), Pi fluxes were determined by measuring 32Pi-Pi self-exchange. Three experimental approaches were employed. First, the effect of pH on steady-state Pi transport at 0.5 and 5 mM was studied. Second, the relationship between Pi transport and Pi concentration (0.25-9.2 mM) at pH 5.6 and 7.9 was determined. Third, the dependence of Pi transport on [H2PO4-] (0.05-4.2 mM) at constant [HPO4(-2)] (0.5 mM), and the converse, [HPO4(-2)] (0.06-4.5 mM) at constant [H2PO4-] (0.5 mM), was evaluated. Ks (apparent half-saturation constant) and Jmax (maximal transport rate) were calculated by two methods: weighted linear regression (WLR) and a nonparametric procedure. The dependence of Pi flux on pH indicates that optimum transport occurs at pH 6.9. Pi transport decreases as pH is reduced when extracellular Pi is either 0.5 or 5 mM. However, at pH 7.9, Pi flux is reduced only in 0.5 mM Pi. At pH 5.6, H2PO4- comprises 93% of the total Pi present, and the calculated Ks is 0.055 +/- 0.026 mM (WLR). This is the same as the Ks determined from the initial phase of the flux vs. [H2PO4-] relationship (0.056 +/- 0.020 mM). However, at pH 7.9 (where 94% of Pi is HPO4(-2)), the measured Ks is 0.58 +/- 0.11 mM (WLR), which is ten times higher than at pH 5.6. This value is also five times greater than the Ks calculated from the flux vs. [HPO4(-20)] curve (0.106 +/- 0.16 mM). Kinetic parameters calculated by the nonparametric method, though somewhat different, gave similar relative results. Taken together, these results support two conclusions: (1) H2PO4- is the substrate for the Na+-dependent Pi transport system of the Ehrlich cell, and (2) H+ can inhibit Pi transport.  相似文献   

18.
19.
A transmembrane ferricyanide reductase activity was assayed in intact Ehrlich ascites tumor cells. Kinetic measurements gave a Km of 0.14 mM and a Vmax of 0.31 mumol/min per 10(6) cells. In short-term batch experiments, this activity was enhanced in the presence of 10 mM lactate, a source of cytosolic NADH. The transmembrane redox activity was accompanied by alkalinization of the cytosol. Both ferricyanide reduction and proton extrusion were diminished in the presence of 0.2 mM amiloride. Several cytotoxic drugs significantly inhibited the ferricyanide reductase activity at concentrations at which they show antineoplastic activity.  相似文献   

20.
Studies have been conducted on the movements of sodium and potassium into and out of the Ehrlich ascites tumor cell. Under steady state conditions, at 22 degrees C., in the absence of an exogenous source of glucose, the cell flux for both potassium and sodium averaged 0.8 microM10(7) cells/hr, or 3.0 pM/cm.(2)/sec. The cell can accumulate potassium and extrude sodium against electrochemical gradients for both ions. It is possible under the experimental conditions reported to separate the transport systems for these two ions. Thus, it has been shown that under conditions of low temperature with a diminished metabolism, net fluxes for the two ions are different. Also, following periods of 24 hours at 2 degrees C., an exogenous source of glucose enhances the accumulation of potassium sevenfold while sodium extrusion is uninfluenced by the presence of glucose. Similarly potassium exchange rates are temperature-dependent, with Q(10) values as high as 5, while exchange rates for sodium are temperature-insensitive, with Q(10) values of 1.2 to 1.6. Glycolysis has been eliminated as an energy source for the transport processes since these processes go on in the absence of an exogenous source of glucose. It is estimated that a maximum of 0.3 per cent of the energy derived from the total oxidative metabolism of glucose would be required to support independent transport of potassium and sodium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号