首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe here an efficient procedure for the precise quantitation of leukotriene E4 (LTE4) in a small volume of urine, which was achieved mainly by the use of an Empore extraction disk cartridge. After addition of [3H]LTE4 to 2 ml of urine, an Empore C18 cartridge was used for initial extraction of the urine, which resulted in the extraction of LTE4 in a small volume of solvent. The eluate could then be injected onto a high-performance liquid chromatography column without further concentration. After separation by high-performance liquid chromatography, LTE4 was extracted from the effluent using an Empore C18 cartridge. The concentration of LTE4 was subsequently quantified by enzyme immunoassay. LTE4 can be recovered from urine with sufficient efficiency (69.9±4.7%, mean±S.D., n = 101). The coefficient of variation of the assay procedure was less than 10%. When urine was spiked with different amounts of LTE4, the recovery of LTE4 added to the urine specimen was less than 120%. The concentration of LTE4 in urine from normal healthy subjects was 48.0±15.3 pg/mg creatinine (n = 15).  相似文献   

2.
Cysteinyl leukotrienes (LT) C4, LTD4, and LTE4 are potent mediators of anaphylaxis and inflammatin. LTE4 is extensively metabolized in man mainly by ω-oxidation followed by subsequent β-oxidation to more polar and biologically inactive metabolites. This paper describes a method for the synthesis of [1,20−18O2]-carboxy-LTE4, [1,18−18O2]-carboxy-dinor-LTE4, and [1,16−18O2]-carboxy-14,15-dihydro-tetranor-LTE4 starting from the unlabelled dimethyl esters of 20-carboxy-LTA4, 18-carboxy-dinor-LTA4 and 16-carboxy-14,15-dihydro-tetranor-LTA4, respectively, by separate chemical conjugation with cysteine hydrochloride in H218O-methanol followed by alkaline hydrolysis with Li18OH. The isotopic purity of the isolated reaction products was 94% at 18O for all three preparations while only 0.3% remained unlabelled as confirmed by negative-ion chemical-ionization gas chromatography-mass spectrometry (GC-NICI-MS) after their catalytical reduction/desulphurization and derivation. The 18O2-labelled compounds are demonstrated to be suitable internal standards for quantification by GC-NICI-MS and GC-NICI-tandem MS. We found by GC-NICI-tandem MS that the excretion rate of 20-carboxy-LTE4 is comparable to that of LTE4 (both in nmol/mol creatinine, mean ± S.E.) in healthy children (26.7 ± 4.7 vs. 32.0 ± 6.0, n = 9) and adults (13.9 ± 1.1 vs. 27.2 ± 5.4, n = 3).  相似文献   

3.
A nonspecific liver esterase was found to not only catalyze the hydrolysis of the methyl ester of prostaglandin F2α (PGF2α) but also to catalyze the exchange of the carboxyl oxygen atoms with water leading to the production of [18O2]PGF2α when the enzymatic hydrolysis is carried out in H218O. The kinetics of this oxygen-18 exchange reaction are briefly discussed. The [18O2]PGF2α was found to be relative stable toward back exchange in methanol, aqueous buffer, and urine, but rapidly back exchanged to the native PGF2α in plasma with a half-life of 1 h. The [18O2]PGF2α was relatively stable in plasma to which alcohol had been added. The utility of the oxygen-18 labeled prostaglandin as an internal standard in a gas chromatography-mass spectrometry assay was demonstrated at the picomole range.  相似文献   

4.
The BIO-FAST (Fully Automated Sample Treatment) HPLC can be used for the isolation and separation of leukotriene E4 (LTE4) from the urine of asthmatic patients. A chemically related leukotriene, N-acetyl[14,15-3H]leukotriene D4 (NAc[3H]LTD4), has been evaluated as an internal standard to allow full automation of the BIO-FAST method. NAcLTD4 is not a human metabolite, does not co-elute with endogenously produced LTs and is stable in native urine at 37°C for at least 18 h. Recovery and stability studies were conducted by adding NAc[3H]LTD4 and [3H]LTE4 to the baseline urine of four asthmatic patients. Automated extraction of these four samples over 22 hours, using the BIO-FAST system, yielded recoveries of 80.5% (6.6 %CV, n=12) and 72.4% (10.0 %CV, n=12) for the NAc[3H]LTD4 and [3H]LTE4, respectively. The ratio of NAc[3H]LTD4 to [3H]LTE4 was 1.12 (6.3 %CV, n=12) demonstrating the consistent relative extraction of these two leukotrienes.  相似文献   

5.
Oestrogens, such as oestrone (E1), 17β-oestradiol (E2), oestriol (E3) and their biologically active metabolites 2-methoxyoestrone (2-MeOE1), 2-hydroxyoestradiol (2-OHE2) 16-ketooestradiol (16-OE2), 16-epioestriol (16-epiE3), as well as testosterone (T) play an important role in physiological and pathological developmental processes during human development. We therefore aimed at developing an isotope dilution/bench top gas chromatography–mass spectrometry (ID/GC–MS) method, based on benchtop GC–MS, for the simultaneous determination (‘profiling’) of the above analytes in children. The method consisted of equilibration of urine (5 ml) with a cocktail containing stable isotope-labelled analogues of the analytes as internal standards ([2,4-2H2]E1, [2,4,16,16-2H4]E2, [2,4,17-2H3]E3, [16,16,17-2H3]T, [1,4,16,16-2H4]2-MeOE1, [1,4,16,16,17-2H5]2-OHE2, [2,4,15,15,17-2H5]16-OE2 and [2,4-2H2]16-epiE3). Then, solid-phase extraction (C18 cartridges), enzymatic hydrolysis (sulphatase from Helix pomatia (type H-1)), re-extraction, purification by anion exchange chromatography and derivatisation to trimethylsilyl ethers followed. The samples were analysed by GC–MS (Agilent GC 6890N/5975MSD; fused silica capillary column 25 m × 0.2 mm i.d., film 0.10 μm). Calibration plots were linear and showed excellent reproducibility with coefficients of determination (r2) between 0.999 and 1.000. Intra- and inter-assay coefficients of variation (CV) were <2.21% for all quantified metabolites. Sensitivity was highest for 2-OHE2 (0.25 pg per absolute injection: signal-to-noise ratio (S/N) = 3) and lowest for 16-epiE3 (2 pg per absolute injection: S/N = 2.6), translating into corresponding urine sample analyte concentrations of 0.025 ng ml?1 and 0.2 ng ml?1, respectively. Accuracy – determined in a two-level spike experiment – showed relative errors ranging between 0.15% for 16-OE2 and 11.63% for 2-OHE2. Chromatography showed clear peak shapes for the components analysed. In summary, we describe a practical, sensitive and specific ID/GC–MS assay capable of profiling the above-mentioned steroids in human urine from childhood onwards.  相似文献   

6.
We analyzed growth data from model aspen (Populus tremuloides Michx.) forest ecosystems grown in elevated atmospheric carbon dioxide ([CO2]; 518 μL L?1) and ozone concentrations ([O3]; 1.5 × background of 30–40 nL L?1 during daylight hours) for 7 years using free‐air CO2 enrichment technology to determine how interannual variability in present‐day climate might affect growth responses to either gas. We also tested whether growth effects of those gasses were sustained over time. Elevated [CO2] increased tree heights, diameters, and main stem volumes by 11%, 16%, and 20%, respectively, whereas elevated ozone [O3] decreased them by 11%, 8%, and 29%, respectively. Responses similar to these were found for stand volume and basal area. There were no growth responses to the combination of elevated [CO2+O3]. The elevated [CO2] growth stimulation was found to be decreasing, but relative growth rates varied considerably from year to year. Neither the variation in annual relative growth rates nor the apparent decline in CO2 growth response could be explained in terms of nitrogen or water limitations. Instead, growth responses to elevated [CO2] and [O3] interacted strongly with present‐day interannual variability in climatic conditions. The amount of photosynthetically active radiation and temperature during specific times of the year coinciding with growth phenology explained 20–63% of the annual variation in growth response to elevated [CO2] and [O3]. Years with higher photosynthetic photon flux (PPF) during the month of July resulted in more positive growth responses to elevated [CO2] and more negative growth responses to elevated [O3]. Mean daily temperatures during the month of October affected growth in a similar fashion the following year. These results indicate that a several‐year trend of increasingly cloudy summers and cool autumns were responsible for the decrease in CO2 growth response.  相似文献   

7.
The metabolism of leukotriene (LT)C4 and its major routes of elimination have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 μCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% ± 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amount of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production .  相似文献   

8.
The carcinogenic 7-methylbenz[a]anthracene and 7,12-dimethylbenz[a]anthracene were converted by rat liver microsomes into the corresponding hydroxymethyl derivatives and other metabolic products. The 7-methylbenz[a]anthracene incubation was carried out in H218O, and no incorporation of oxygen-18 was found in the hydroxymethyl metabolite isolated and purified by high pressure liquid chromatography, and analyzed by mass spectrometry. When 7-methylbenz[a]anthracene or 7,12-dimethylbenz[a]anthracene was incubated with 18O2, isotope incorporation was observed in the corresponding hydroxymethyl derivatives, indicating that such hydroxylation is a true oxygenase reaction.  相似文献   

9.
We quantitatively evaluated the effects of elevated concentration of ozone (O3) on growth, leaf chemistry, gas exchange, grain yield, and grain quality relative to carbon‐filtered air (CF) by means of meta‐analysis of published data. Our database consisted of 53 peer‐reviewed studies published between 1980 and 2007, taking into account wheat type, O3 fumigation method, rooting environment, O3 concentration ([O3]), developmental stage, and additional treatments such as drought and elevated carbon dioxide concentration ([CO2]). The results suggested that elevated [O3] decreased wheat grain yield by 29% (CI: 24–34%) and aboveground biomass by 18% (CI: 13–24%), where CI is the 95% confidence interval. Even in studies where the [O3] range was between 31 and 59 ppb (average 43 ppb), there was a significant decrease in the grain yield (18%) and biomass (16%) relative to CF. Despite the increase in the grain protein content (6.8%), elevated [O3] significantly decreased the grain protein yield (?18%). Relative to CF, elevated [O3] significantly decreased photosynthetic rates (?20%), Rubisco activity (?19%), stomatal conductance (?22%), and chlorophyll content (?40%). For the whole plant, rising [O3] induced a larger decrease in belowground (?27%) biomass than in aboveground (?18%) biomass. There was no significant response difference between spring wheat and winter wheat. Wheat grown in the field showed larger decreases in leaf photosynthesis parameters than wheat grown in < 5 L pots. Open‐top chamber fumigation induced a larger reduction than indoor growth chambers, when plants were exposed to elevated [O3]. The detrimental effect was progressively greater as the average daily [O3] increased, with very few exceptions. The impact of O3 increased with developmental stages, with the largest detrimental impact during grain filling. Both drought and elevated [CO2] significantly ameliorated the detrimental effects of elevated [O3], which could be explained by a significant decrease in O3 uptake resulting from decreased stomatal conductance.  相似文献   

10.
Two novel β-oxidation products of peptido leukotrienes, 16-carboxy-17, 18, 19, 20-tetranor-14, 15-dihydro-N-acetyl LTE4 and 18-carboxy-19, 20-dinor-N-acetyl LTE4, were prepared by total synthesis and used to identify previously unknown polar rat biliary metabolites. When [3H] LTC4 and synthetic N-acetyl-LTE4 were administered intravenously to anesthetized inbred male rats, extraction of the bile and subsequent reverse-phase HPLC fractionation allowed the isolation of two novel metabolites of N-acetyl-LTE4. Comparison of U.V. spectra and coelution experiments revealed that these metabolites correspond to the above-mentioned synthetic β-oxidation products. This was further confirmed by the coelution of the corresponding methyl esters. Oxidative ozonolysis of the metabolically produced 16-carboxy-17, 18, 19, 20-tetranor-14, 15-dihydro-N-acetyl LTE4 (major metabolite) confirmed the absence of the 14, 15-unsaturation. The presence of these metabolites indicates that peptide leukotrienes undergo N-acetylation followed by ω and subsequent β-oxidation in the anesthetized rat.  相似文献   

11.
TMEM16F, a dual-function phospholipid scramblase and ion channel, is important in blood coagulation, skeleton development, HIV infection, and cell fusion. Despite advances in understanding its structure and activation mechanism, how TMEM16F is regulated by intracellular factors remains largely elusive. Here we report that TMEM16F lipid scrambling and ion channel activities are strongly influenced by intracellular pH (pHi). We found that low pHi attenuates, whereas high pHi potentiates, TMEM16F channel and scramblase activation under physiological concentrations of intracellular Ca2+ ([Ca2+]i). We further demonstrate that TMEM16F pHi sensitivity depends on [Ca2+]i and exhibits a bell-shaped relationship with [Ca2+]i: TMEM16F channel activation becomes increasingly pHi sensitive from resting [Ca2+]i to micromolar [Ca2+]i, but when [Ca2+]i increases beyond 15 µM, pHi sensitivity gradually diminishes. The mutation of a Ca2+-binding residue that markedly reduces TMEM16F Ca2+ sensitivity (E667Q) maintains the bell-shaped relationship between pHi sensitivity and Ca2+ but causes a dramatic shift of the peak [Ca2+]i from 15 µM to 3 mM. Our biophysical characterizations thus pinpoint that the pHi regulatory effects on TMEM16F stem from the competition between Ca2+ and protons for the primary Ca2+-binding residues in the pore. Within the physiological [Ca2+]i range, the protonation state of the primary Ca2+-binding sites influences Ca2+ binding and regulates TMEM16F activation. Our findings thus uncover a regulatory mechanism of TMEM16F by pHi and shine light on our understanding of the pathophysiological roles of TMEM16F in diseases with dysregulated pHi, including cancer.  相似文献   

12.
A sensitive and specific assay has been developed for measurement of total sulfidopeptide leukotriense (LT) in plasma. LTC4 and LTD4 in plasma are converted to LTE4 which is then extracted by C18 Sep-Pak binding and elution. Total LTE4 in resolved by reverse phase high performance liquid chromatography (RP-HPLC) and quantitated by radioimmunoassay (RIA). A [3H]LTE4 internal standard is added to the starting plasma sample to allow RP-HPLC to be assayed for LTE4-like immunoreactivity. The correlation between the measured increase in LTE4 concentration after addition of incremental amounts of LTC4 and LTE4 to plasma was 0.989 and 0.978, respectively, with slopes of 1.05 and 1.11. Addition of 51 pg/ml LTE4 to 5 ml plasma was detectable; the measured increase was 48 ± 12 pg/ml (mean ± SE, n = 7). The intra-assay coefficient of variation for 341 pg/ml of added LTC4 was 3.2% (n = 6). Sulfidopeptide leukotrienes could not be detected in blood samples taken from 12 normal volunteers in whom the theoretical detection limit, calculated from the sensitivity of the RIA, the overall recovery of LTE4, and the volume of plasma extracted, was 83 ± 4 pg LTE4/ml plasma (0.19 ± 0.01 pmol sulfidopeptide leukotriene/ml plasma; mean ± SE).  相似文献   

13.
Exposure to elevated tropospheric ozone concentration ([O3]) accelerates leaf senescence in many C3 crops. However, the effects of elevated [O3] on C4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season‐long exposure to elevated [O3] (~100 nl L?1) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O3] led to reductions in photosynthetic CO2 assimilation of both inbred (?22%) and hybrid (?33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O3], with some lines showing no change in photosynthesis at elevated [O3]. Based on analysis of inbred line B73, the reduced CO2 assimilation at elevated [O3] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O3 impacts crop performance.  相似文献   

14.
A method for determination of α-ketoisocaproic acid (KIC) and [4,5,5,5,6,6,6-2H7]α-ketoisocaproic acid ([2H7]KIC) in rat plasma was developed using gas chromatography–mass spectrometry-selected ion monitoring (GC–MS-SIM). [5,5,5-2H3]α-Ketoisocaproic acid ([2H3]KIC) was used as an analytical internal standard to account for losses associated with the extraction, derivatization and chromatography. The keto acids were extracted by cation-exchange chromatography using BondElut SCX cartridge and derivatized with N-phenyl-1,2-phenylenediamine to form N-phenylquinoxalinone derivatives. Quantitation was performed by SIM of the respective molecular ions at m/z 278, 281 and 285 for the derivatives of KIC, [2H3]KIC and [2H7]KIC on the electron impact method. The limit of detection was found to be 70 fmol per injection (S/N=3) and the limit of quantitation for [2H7]KIC was around 50 nM in rat plasma. Endogenous KIC concentrations in 50 μl of rat plasma were measured with relative intra- and inter-day precision of 4.0% and 3.3%, respectively. The intra- and inter-day precision for [2H7]KIC spiked to rat plasma in the range of 0.1 to 10 μM gave good reproducibility with relative standard deviation (RSD) of 6.5% and 5.4%, respectively. The intra- and inter-day relative errors (RE) for [2H7]KIC were less than 6.4% and 3.8%, respectively. The method was applied to determine the plasma concentration of [2H7]KIC after an intravenous administration of [2H7]KIC in rat.  相似文献   

15.
One, two, three and four electron reduced forms of α-[P2W18O62]6− in aqueous acidic electrolyte media have been selectively generated by bulk electrolysis from a solution that has an initial pH of 3.6. The reactivities of the reduced polyoxometalate anions and identities of products formed in the presence and absence of dioxygen have been assessed via oxygen and hydrogen Clark-type electrodes, a pH electrode and rotating disk electrode voltammetry. [P2W18O62]7− is stable to protons but is slowly oxidized by dioxygen (timescale: hours to days) back to [P2W18O62]6−. In contrast, [P2W18O62]8− reacts more rapidly with O2 and slowly with H+, whereas generation of the [P2W18O62]9− and [P2W18O62]10− anion is accompanied by a large increase in pH and rapid reaction with O2 or, in its absence, with H+. Consequently, it is concluded that photocatalytic reactions based upon [P2W18O62]6− chemistry are only likely to be of significance if [P2W18O62]9− or more highly reduced species are generated and form part of the catalytic cycle.  相似文献   

16.
A liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method was developed for the quantitation of urinary leukotriene E4 (LTE4). LTE4 and its internal standard were extracted by solid-phase extraction and analysed using LC–MS–MS in the selected reaction monitoring (SRM) mode. A good linear response over the range of 10 pg to 10 ng was demonstrated. The accuracy of added LTE4 ranged from 97.0% to 108.0% with a mean and SD of 100.6±2.4%. We detected LTE4 (63.1±18.7 pg/mg creatinine, n=10) in healthy human urine. This method can be used to determine LTE4 in biological samples.  相似文献   

17.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

18.
Some complexes containing “[Ni([18]py2N4)]2+, [Ni([20]py2N4)]2+, [Ni(Bzo2[18]py2N4)]2+ and [Ni(Bzo2[20]py2N4)]2+” were successfully prepared by the template synthesis of 2,6-diacetylpyridine with [bis(diamine)nickel(II)]; [Ni(N-N)2]2+; within the zeolite-Y. These complexes were entrapped in the supercage of Y-zeolite by a two-step process in the liquid phase: (i) inclusion of a Ni(II) precursor complex, [Ni(diamine)2]2+@NaY, and (ii) template synthesis of the nickel(II) precursor complex with 2,6-diacetylpyridine. The new complex nanoparticles entrapped within the zeolite-Y “[Ni([18]py2N4)]2+@NaY, [Ni([20]py2N4)]2+@NaY, [Ni(Bzo2[18]py2N4)]2+@NaY, [Ni(Bzo2[20]py2N4)]2+@NaY” were characterized by several techniques: chemical analysis and spectroscopic methods (FT-IR, UV-Vis, XRD, BET, DRS). Analysis of the data indicates that the Ni(II) complexes are encapsulated within the zeolite-Y and exhibit different property from those of the free complexes, which can arise from distortions caused by steric effects due to the presence of sodium cations, or from interactions with the zeolite matrix.  相似文献   

19.
A gas chromatographic–mass spectrometric method for the simultaneous determination of methionine and total homocysteine in human plasma is described. dl-[2H4]Methionine and dl-[2H8]homocystine were used as internal standards. The method involved reduction of the disulfide bond with dithiothreitol, purification by cation-exchange chromatography using a BondElut SCX cartridge and derivatization with isobutyl chlorocarbonate in water–ethanol–pyridine. Quantitation was performed by selected-ion monitoring of the quasi-molecular ions of N(O,S)-isobutyloxycarbonyl ethyl ester (IBC-OEt) derivatives for methionine and [2H4]methionine, respectively, and the fragment ions ([M+H–COOisoBu–COOEt]+) for IBC-OEt derivatives for homocysteine and [2H4]homocysteine, respectively. The sensitivity, specificity, accuracy and precision of the method were demonstrated to be satisfactory for measuring concentrations of methionine and total homocysteine in human plasma.  相似文献   

20.
Tropospheric ozone (O3) is a harmful air pollutant that can negatively impact plant growth and development. Current O3 concentrations ([O3]) decrease forest productivity and crop yields and future [O3] will likely increase if current emission rates continue. However, the specific effects of elevated [O3] on reproductive development, a critical stage in the plant's lifecycle, have not been quantitatively reviewed. Data from 128 peer‐reviewed articles published from 1968 to 2010 describing the effects of O3 on reproductive growth and development were analysed using meta‐analytic techniques. Studies were categorized based on experimental conditions, photosynthetic type, lifecycle, growth habit and flowering class. Current ambient [O3] significantly decreased seed number (?16%), fruit number (?9%) and fruit weight (?22%) compared to charcoal‐filtered air. In addition, pollen germination and tube growth were decreased by elevated [O3] compared to charcoal‐filtered air. Relative to ambient air, fumigation with [O3] between 70 and 100 ppb decreased yield by 27% and individual seed weight by 18%. Reproductive development of both C3 and C4 plants was sensitive to elevated [O3], and lifecycle, flowering class and reproductive growth habit did not significantly affect a plant's response to elevated [O3] for many components of reproductive development. However, elevated [O3] decreased fruit weight and fruit number significantly in indeterminate plants, and had no effect on these parameters in determinate plants. While gaps in knowledge remain about the effects of O3 on plants with different growth habits, reproductive strategies and photosynthetic types, the evidence strongly suggests that detrimental effects of O3 on reproductive growth and development are compromising current crop yields and the fitness of native plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号