首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two populations of softmouth trout ( Salmo obtusirostris ) from the rivers Neretva (Bosnia and Herzegovina) and Jadro (Croatia), along with two neighbouring populations of brown trout ( Salmo trutta ) were analysed with a suite of genetic markers (two mtDNA genes, two nuclear genes, and nine microsatellites) as well as morphological characters. The Jadro softmouth trout were fixed for a brown trout mtDNA haplotype of the Adriatic lineage, which is 1.7% divergent from a previously described haplotype characteristic for the Neretva softmouth trout. All other genetic markers, as well as morphological analysis, supported the clear distinction of softmouth trout from the rivers Neretva and Jadro from brown trout in neighbouring populations, and thus a mtDNA capture event is assumed. Population specific microsatellite allele profiles, as well as a high number of private alleles for both populations of softmouth trout, support the hybridization between brown trout and the Jadro softmouth trout most likely being of ancient origin, thus leading to a reticulate evolutionary pattern of mtDNA in this taxon.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 139–152.  相似文献   

3.
More than 20 populations of the cave-dwelling characid Astyanax occur within a restricted karst area in Mexico. The fish possess reduced eyes without lenses and visual cells. It is still an open question as to whether this condition evolved convergently after multiple entries of the surface ancestor into the different caves or whether a single cave ancestor, already characterized by reduced eyes, spread secondarily within them. In the crosses between specific populations, specimens appear that deviate considerably from those of the parents. They possess larger and better-developed eyes with histologically intact lenses and visual cells; they thus have the structural potential for vision. This indicates that in different cave populations, different mutations in the eye gene system have occurred. In cases where these non-functional rudimentary genes are recombined in hybrid specimens, gene expression may be restored. This is the result of separate evolution of several Astyanax cave populations.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 545−554.  相似文献   

4.
Data supporting the occurrence of adaptive trait transfer (i.e. the transfer of genes and thus the phenotype of an adaptive trait through viral recombination, lateral gene transfer or introgressive hybridization) are provided in this review. Specifically, we discuss examples of lateral gene transfer and introgressive hybridization that have resulted in the transfer or de novo origin of adaptations. The evolutionary clades in which this process has been identified include all types of organisms. However, we restrict our discussion to bacteria, fungi, plants and animals. Each of these examples reflects the same consequence, namely that the transfer of genetic material, through whatever mechanism, may result in adaptive evolution. In particular, each of the events discussed has been inferred to impact adaptations to novel environmental settings in the recipient lineage.  相似文献   

5.
The Nile tilapia (Oreochromis niloticus) is a prominent farmed fish in aquaculture worldwide. Crossbreeding has recently been carried out between the Red-Stirling and the wt Chitralada strains of Nile tilapia, producing a heterotic hybrid (7/8 Chitralada and 1/8 Red-Stirling) that combines the superior growth performance of the Chitralada with the reddish coloration of the Red-Stirling strain. While classical selective breeding and crossbreeding strategies are well known, the molecular mechanisms underlying the phenotypic expression of economically advantageous traits in tilapia remain largely unknown. Molecular investigations have shown that variable expression of growth hormone (gh), insulin-like growth factors (igf1 and 2) and somatolactin (smtla) – components of the growth hormone/insulin-like growth factor (GH/IGF) axis – and myostatin (mstn) genes can affect traits of economic relevance in farmed animals. The aim of this study was to assess and compare the gene expression signature among Chitralada, Red-Stirling and their backcross hybrid in order to gain insights into the effects of introgressive breeding in modulation of the GH/IGF axis. Gene expression analyses in distinct tissues showed that most genes of the GH/IGF axis were up-regulated and mstn was down-regulated in backcross animals in comparison with Red-Stirling and Chitralada animals. These gene expression profiles revealed that backcross animals displayed a distinctive expression signature, which attests to the effectiveness of the introgressive breeding technique. Our findings also suggest that the GH/IGF axis and mstn genes might be candidate markers for fish performance and prove useful within genetic improvement programs aimed at the production of superior-quality tilapia strains using introgressive breeding.  相似文献   

6.
The evolutionary mechanisms responsible for the loss of eyesin cave animals are still unresolved. Hypotheses invoking naturalselection or neutral mutation have been advanced to explaineye regression. Here we describe comparative molecular and developmentalstudies in the teleost Astyanax mexicanus that shed new lighton this problem. A. mexicanus is a single species consistingof a sighted surface-dwelling form (surface fish) and many blindcave-dwelling forms (cavefish) from different caves. We firstreview the evolutionary relationships of Astyanax cavefish populationsand conclude that eye degeneration may have evolved multipletimes. We then compare the mechanisms of eye degeneration indifferent cavefish populations. We describe the results of experimentsshowing that programmed cell death of the lens plays a key rolein controlling eye degeneration in these cavefish populations.We also show that Pax6 gene expression and fate determinationin the optic primordia are modified similarly in different cavefishpopulations, probably due to hyperactive midline signaling.We discuss the contributions of the comparative developmentalapproach toward resolving the evolutionary mechanisms of eyedegeneration. A new hypothesis is presented in which both naturalselection and neutral mutation are proposed to have roles incavefish eye degeneration.  相似文献   

7.
8.
Fundamental ambiguities in the interpretation of brain/body allometric trends can only be resolved by analyzing relationships between ontogenetic brain/body growth processes in different groups. The ambiguous concept of adult encephalization confuses at least three distinct types of transformation of a common mammalian growth curve: scalar magnification, total curve didplacement, and changes in proportions of the pre- and postnatal phases of the curve. The conservative ratio between pre- and postnatal growth phases determines the apparent linearity of comparative brain/body allometry and can be explained by assuming that embyological neurogenetic processes ultimately determine both target brain and body size—the first directly and the second indirectly via neurohormonal regulation of somatic growth. Uneven taxonomic distribution of different ontogenetic growth patterns may explain many differences in the allometric trends at different taxonomic levels of analysis. The human brain grows exactly as if it was in a giant ape body; however, because of decoupled growth in different brain regions, it regulates body growth as though it were the size of a chimpanzee brain. Human encephalization exhibits an ontogenetic transformation not found in other mammalian groups.  相似文献   

9.
10.
We have investigated expression of the homeobox gene Prox 1 during eye degeneration and sensory organ compensation in cavefish embryos. The teleost Astyanax mexicanus consists of sighted surface-dwelling forms (surface fish) and several populations of blind cave-dwelling forms (cavefish), which have evolved independently. Eye formation is initiated during cavefish development, but the lens vesicle undergoes apoptosis, and the eye subsequently arrests and degenerates. The requirement of Prox 1 for lens fiber differentiation and γ-crystallin expression in the mouse suggests that changes in the expression of this gene could be involved in cavefish eye degeneration. Surface fish and cavefish embryos stained with a Prox 1 antibody showed Prox 1 expression in the lens, neuroretina, myotomes, heart, hindbrain, and gut, as reported in other vertebrates. We found that Prox 1 expression is not altered during cavefish lens development. Prox 1 protein was detected in the lens vesicle as soon as it formed and persisted until the time of lens degeneration in each cavefish population. The cavefish lens vesicle was also shown to express a γ-crystallin gene, suggesting that Prox 1 is functional in cavefish lens development. In addition to the tissues described above, Prox 1 is expressed in developing taste buds and neuromasts in cavefish, which are enhanced to compensate for blindness. It is concluded that the Prox 1 gene is not involved in lens degeneration, but that expansion of the Prox 1 expression domain occurs during taste bud and neuromast development in cavefish. Received: 31 July 1999 / Accepted: 8 November 1999  相似文献   

11.
Evolutionary developmental biology (evo-devo) explores the link between developmental patterning and phenotypic change through evolutionary time. In this review, we highlight the scientific advancements in understanding xylem evolution afforded by the evo-devo approach, opportunities for further engagement, and future research directions for the field. We review evidence that (1) heterochrony—the change in rate and timing of developmental events, (2) homeosis—the ontogenetic replacement of features, (3) heterometry—the change in quantity of a feature, (4) exaptation—the co-opting and repurposing of an ancestral feature, (5) the interplay between developmental and capacity constraints, and (6) novelty—the emergence of a novel feature, have all contributed to generating the diversity of woods. We present opportunities for future research engagement, which combine wood ontogeny within the context of robust phylogenetic hypotheses, and molecular biology.  相似文献   

12.
N. Malchus 《Palaeontology》2004,47(6):1539-1574
A study of ligaments of larval, postlarval and adult shells of fossil and recent pteriomorphian bivalves leads to the following observations and hypotheses: (1) Ligament growth passively follows the general growth pattern of the mantle margin. No independent genetic information fixes the anterior, ventral, or posterior growth direction of the ligament. Further growth constraints relate to physical availability of space on the ligament area and to heterochronic processes. (2) The disjunct ligament and the repetition of fibrous or lamellar sublayers are phenotypic aspects of the same derived ligament Bauplan 1. All Pteriomorphia possess the ability to produce repetitive ligaments. This ability and space reductions of the ligament area in independent phylogenetic lineages are responsible for the iterative evolution of ligament grades. (3) Spondylidae and Plicatulidae are duplivincular, and the Ostreoidea are plesiomorphically multivincular. (4) Larval anterior-helical growth of the soft tissue produces opisthogyrate shells and possibly caused the evolution of the alivincular-multivincular grade. Duplivincular-alivincular and multivincular-alivincular grades can be distinguished if larval shell characters are known. (5) The taxonomic distribution of ligament grades as amended in this paper is largely consistent with modern phylogeny hypotheses based on genetic or morphologic or combined character sets. However, the resolution of early phylogenetic nodes requires more data on larval shells of Lower Palaeozoic taxa.  相似文献   

13.
14.
In order to comparatively analyze curtain-like septa in the eyes of visually orientated "close-to-surface-predators" among atherinomorph teleosts, we examined the eyes of 24 atherinomorph species under a binocular microscope with regard to the falciform process and related structures in the vitreous cavity. Additionally, falciform process samples were analyzed by transmission electron microscopy. All the studied representatives of the Cyprinodontiformes and Atheriniformes, and of one of the beloniform suborder, Adrianichthyioidei, possess a "typical" processus falciformis. In the eyes of the representatives of the other beloniform suborder, Belonoidei, however, pigmented structures that originate in the region of the optic disc and protrude into the vitreous cavity were noted. In the Hemiramphidae (halfbeaks) and Exocoetidae (flying fishes) these pigmented structures have a more cone-like shape, whereas in the Belonidae (needlefishes) and Scomberesocidae (sauries) horizontally oriented heavily pigmented curtain-like septa occur that divide the vitreous cavity dorsoventrally. It is suggested that the "typical" processus falciformis represents a plesiomorphic feature within the Atherinomorpha, whereas the pigmented modifications of the falciform process must be seen as a synapomorphic character state of the Belonoidei. The curtain-like septum of the Belonidae and Scomberesocidae might have evolved from the cone-like structures that are found in the Exocoetoidea. The functional significance of the pigmented structures in the eye is as yet not clear, except for the curtain-like septum found in Belonidae. It might play a role in visual orientation near the water surface at Snell's window.  相似文献   

15.
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co‐evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.  相似文献   

16.
Summary Compound eyes of larval and first postlarval grass shrimp (Palaemonetes pugio Holthuis) were studied with light and electron microscopy following adaptation to darkness or bright light. Larvae have well-developed apposition eyes, including 3 main types of accessory screening and reflecting pigments and a fourth class of putatively reflective granules recently described in adult shrimps. Rhabdoms contain orthogonally layered microvilli, and by the last larval stage, 8 retinular cells. Ocular accessory pigments in both light- and dark-adapted larvae are distributed much like those of light-adapted adults, but the distal mass of reflecting pigment is concentrated dorsally in larvae and ventrally in adults. Since larvae swim upside-down, reflecting pigment is oriented downward in all developmental stages and may function for countershading. Light and dark adaptational migrations of all 3 major accessory pigments commence abruptly at metamorphosis to the first postlarva. Upon dark adaptation in postlarvae, superposition optics remain impossible because (1) distal screening pigment migrates only slightly, (2) no clear zone has developed, and (3) the crystalline cones remain circular in cross section. Nevertheless, a slight improvement in photon catch is expected due to extensive redistributions of reflecting pigment and retinular cell screening pigment granules.
  相似文献   

17.
Onopordum L. (Compositae) is an extremely diverse genus of thistles, which includes several species that have become serious pasture weeds in several regions of the world. We present a comparison of the genetic diversity in invasive forms of Onopordum from Australia with several known native European species. A total of 108 polymorphic genetic markers was generated using amplified fragment length polymorphism (AFLP) fingerprinting. Non-metric multidimensional scaling (NMDS) revealed that Australia contained O. acanthium, O. illyricum and a full range of genetic intermediates between these species. Intermediates largely comprised segregating fragments diagnostic for European O. acanthium and O. illyricum with a low frequency of fragments that were diagnostic for other species never recorded in Australia. The current genetic patterns in Australia may be best explained by a combination of processes, both in the native and in the alien range. These include multiple introductions of seed, including hybrid material, and the continuous dispersal in Australia, leading to an increase in the contact among hybridizing taxa. Such processes appear to have produced more widespread hybridization and introgression in Australian Onopordum than is found in Europe.  相似文献   

18.
ABSTRACT

To investigate the relationship between light sensing systems in the eye and circadian oscillators in the hypothalamus of subterranean rodents, we studied subterranean Mandarin voles (Lasiopodomys mandarinus) that spend their entire lives under dark conditions with degenerated eyes, and compared oscillatory expression patterns of clock genes in the hypothalamus and eye between Mandarin voles and their aboveground relatives, Brandt’s voles (L. brandtii). Individuals of both vole species were kept under a 12-h light/12-h dark condition or continuous dark condition for 4 weeks. In both species, the expressions of most genes showed significant cosine rhythmicity in the hypothalamus but relatively weak rhythmicity in the eye. The number of rhythmic genes in the eye of Mandarin voles increased under the dark condition, but the opposite trend was observed in the eye of Brandt’s voles. The expression levels of most clock genes in the hypothalamus of both vole species did not significantly differ between the two conditions, but unlike in Mandarin voles, these expression levels significantly decreased in the eye of Brandt’s voles kept under the dark condition. In both vole species, the peak phase of most clock genes exhibited advanced or invariant change in the hypothalamus under the dark condition, and the peak phase of most clock genes showed consistent changes between the eye and hypothalamus of Mandarin voles. However, most clock genes in the eye showed a delayed phase in Brandt’s voles kept under the dark condition. In conclusion, the hypothalamus plays an important role in both vole species irrespective of the light condition. However, the expression patterns of clock genes in the eye differed between the vole species, indicating that each species adapted differently to their environments.  相似文献   

19.
20.
The intercalary segment is a limbless version of the tritocerebral segment and is present in the head of all insects, whereas other extant arthropods have retained limbs on their tritocerebral segment (e.g. the pedipalp limbs in spiders). The evolutionary origin of limb loss on the intercalary segment has puzzled zoologists for over a century. Here we show that an intercalary segment-like phenotype can be created in spiders by interfering with the function of the Hox gene labial. This links the origin of the intercalary segment to a functional change in labial. We show that in the spider Parasteatoda tepidariorum the labial gene has two functions: one function in head tissue maintenance that is conserved between spiders and insects, and a second function in pedipalp limb promotion and specification, which is only present in spiders. These results imply that labial was originally crucial for limb formation on the tritocerebral segment, but that it has lost this particular subfunction in the insect ancestor, resulting in limb loss on the intercalary segment. Such loss of a subfunction is a way to avoid adverse pleiotropic effects normally associated with mutations in developmental genes, and may thus be a common mechanism to accelerate regressive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号