首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bile canalicular membranes and plasma membranes free of bile canalicular membranes were prepared from rat livers and their lipolytic activities were measured. Both preparations catalyzed hydrolysis and transacylation when monoacylglycerol and phosphatidylethanolamine were used as substrates. The specific enzymatic activity in the plasmalemma free of bile canalicular membranes was slightly higher than that in bile canalicular membranes. Neither preparation attacked the triacylglycerol of chylomicra, which indicates the lack of a lipoprotein lipase. Heparin and CaCl2 stimulated the activities in both preparations. On the basis of these data, we suggest that monoacylglycerol acyltransferase can serve two distinct roles in the liver cell, depending upon the mumbrane fraction of association.  相似文献   

2.
A selective deficiency of hepatic triacylglycerol lipase in guinea pigs   总被引:1,自引:0,他引:1  
The properties of postheparin plasma triacylglycerol-hydrolyzing enzymes were investigated in guinea pig and rat. In rat, lipoprotein lipase and hepatic triacylglycerol lipase were separated on a heparin-Sepharose affinity chromatography. In postheparin plasma of guinea pig, however, hepatic triacylglycerol lipase was almost completely absent, while lipoprotein lipase was present. Hepatic triacylglycerol lipase was also deficient in the liver tissue extract of guinea pig. Plasma lipoprotein compositions of high-fat fed and control guinea pigs were analyzed. One of the outstanding changes found in high-fat fed animals was the presence of chylomicronemia. One guinea pig showed gross hyperlipemia with triacylglycerol concentrations of 2715 mg/100 ml. Plasma triacylglycerol concentrations of each lipoprotein fraction of very low density, intermediate density, low density and high density lipoproteins from high-fat fed animals were almost the same as those of the corresponding lipoprotein fractions from controls. Discussion was focused on the development of chylomicronemia in relation to the defects of triacylglycerol-hydrolyzing enzyme systems in this animal.  相似文献   

3.
Conditions for measurement of the lipolytic activities, lipoprotein lipase and hepatic triacylglycerol lipase in cynomolgus monkey postheparin plasma are described. The two activities are separable by heparin-Sepharose chromatography. Goat anti-human hepatic triacylglycerol lipase serum inhibits monkey hepatic triacylglycerol lipase activity and allows direct measurement of lipoprotein lipase in post-heparin plasma. While both human and homologous serum can be used as a source of activator apolipoprotein, homologous serum produces a much greater activation.  相似文献   

4.
We have demonstrated that low and high density lipoproteins from monkey plasma are capable of accepting and accumulating monoacylglycerol that is formed by the action of lipoprotein lipase on monkey lymph very low density lipoproteins. Furthermore, the monoacylglycerol that accumulates in both low and high density lipoproteins is not susceptible to further hydrolysis by lipoprotein lipase but is readily degraded by the monoacylglycerol acyltransferase of monkey liver plasma membranes. These observations suggest a new mechanism for monoacylglycerol transfer from triacylglycerol rich lipoproteins to other lipoproteins. In addition, the finding that monoacylglycerol bound to low and high density lipoprotein is degraded by the liver enzyme but not lipoprotein lipase lends support to the hypothesis that there are distinct and consecutive extrahepatic and hepatic stages in the metabolism of triacylglycerol in plasma lipoproteins.  相似文献   

5.
Using affinity chromatography on heparin-Sepharose 4B, triglyceride lipase was isolated from rabbit liver tissue and purified. The specific activity of the enzyme isolated from the usual homogenate was equal to (3.8 +/- 1.2) x 10(3) mumol/hour/mg protein. After treatment of liver tissue homogenates with liquid nitrogen the enzyme activity increased severalfold as compared to the enzyme isolated from the usual homogenate. The dependences of the triglyceride lipase activity on the concentrations of the protein (enzyme), substrate (triglyceride), albumin (fatty acid acceptor) and pH were studied. The isolated form of liver triglyceride lipase was found to have two pH optima at 6.5 and 8.5.  相似文献   

6.
Lipase activity towards triacylglycerol and diacylglycerol was measured at pH 4.8 using a microsomal preparation from rat brain as the enzyme source. The optimal pH for the hydrolysis of triacylglycerol was 4.8, with only minor lipolytic activity in the alkaline pH range. Diacylglycerol was the major product of triacylglycerol hydrolysis, with only little monoacylglycerol being formed. When diacylglycerol was the starting substrate it was hydrolyzed at a rate 10-fold greater than triacylglycerol, and the product was monoacylglycerol. The enzyme showed positional specificity for the fatty acid moieties located at the primary positions of sn-glycerol. 1,3-Diacylglycerol was hydrolyzed at greater than twice the rate of the corresponding 1,2(2,3)-isomer.  相似文献   

7.
We investigated the metabolism by hepatocyte suspensions of the acylglycerols in lipoprotein remnants as well as those associated with albumin and low or high density lipoproteins. Remnants, albumin and plasma lipoproteins, rich in monoacylglycerol were prepared by short-term incubations of radio-labeled chylomicra or very low density lipoproteins with extrahepatic lipoprotein lipase in the presence of albumin and low and high density lipoproteins. We demonstrated that liver parenchymal cells contain an active monoacylglycerol acyltransferase that is located on the extracellular surface of the cell plasma membrane. Further, the enzyme is capable of degrading the monoacylglycerol in all the above forms. Triacylglycerol in intact chylomicra and very low density lipoproteins were not metabolized by the cells to any appreciable degree. The degradation of the remnant triacylglycerol appeared to depend solely on the activity of the lipoprotein lipase bound to the lipoprotein remnants. Little uptake of intact lipoprotein acylglycerols by the hepatocytes was observed; instead, hydrolysis of the substrates in the medium always preceded the uptake of the products. The products were then utilized for the synthesis of triacylglycerol and phospholipid within the cells.  相似文献   

8.
It was found that phospholipase A2 and lysophospholipase, both of which were released from thrombin-stimulated rat platelets, had high affinity to insolubilized heparin. Phospholipase A2 released from rat platelets was purified by the sequential use of column chromatography on heparin-Sepharose and TSK gel G2000SW (high-performance liquid chromatography, HPLC). The enzyme was near homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPLC, and its Mr was estimated to be 13,500. The purified enzyme was labile and lost its activity within 1 h when incubated at 37 degrees C. Phospholipids or detergent in the solution protected the enzyme against inactivation. Phospholipase activity was inhibited by p-bromophenacylbromide, but not by diisopropylfluorophosphate or iodoacetamide. Lysophospholipase, which was also released from rat platelets, was separated from phospholipase A2 by chromatography on heparin-Sepharose.  相似文献   

9.
The lipid-lowering effect of pantethine, a new drug affecting lipid metabolism, had been evaluated in carbohydrate-induced hyperlipidemic rats. Administration of the drug raised post-heparin lipolytic activities, the change being due to an increase in lipoprotein lipase activity, whereas hepatic lipase activity remained virtually unchanged. Total lipoprotein lipase activity per g of adipose tissue increased in pantethine-treated rats compared with controls. Furthermore, the soluble lipoprotein lipase of fat-pads was fractionated by heparin-Sepharose affinity chromatography. The first active peak, originated from the microsomal fractions, significantly increased after the drug treatment, while the second one, originated from the plasma membranes, remained unchanged. The increase in the microsomal lipoprotein lipase activity may be due to an increase in intracellular synthesis of lipoprotein lipase enzyme proteins. The heterogeneity of lipoprotein lipase of rat adipose tissues was ensured using affinity chromatography on heparin-Sepharose.  相似文献   

10.
An antiserum was raised in a rabbit against highly purified human liver dihydropteridine reductase (EC 1.6.99.7). Dihydropteridine reductase from human liver, in human cultured fibroblasts and in continuous lymphoid cells all showed identical antigenic properties. The structural characteristics of the reductase from these three sources were further compared by the use of high-precision two-dimensional polyacrylamide-gel electrophoresis. The enzyme from radiolabelled fibroblasts and continuous lymphoid cells was isolated by immunoprecipitation or by affinity chromatography and compared with the purified liver enzyme. Two major polypeptide species were resolved, and polypeptides from all three sources co-migrated identically. Indirect evidence is presented indicating that one of the polypeptide species may have been derived from the other via a post-translational modification. These results support the concept that the same structural gene(s) encodes for dihydropteridine reductase in human liver, fibroblasts and lymphocytes.  相似文献   

11.
The regulatory events whereby the amount of secreted heart lipoprotein lipase decreases post-prandially and increases during fasting are unclear. We examined whether the nutritional state influenced the lipolytic activities that hydrolyze tri-, di-, and monoacylglycerol as membrane-associated enzyme in rat cardiomyocytes. Properties of triacylglycerol lipase are typical of lipoprotein lipase whereas diacylglycerol and monoacylglycerol lipase activities hydrolyze the products of lipoprotein lipase action. We observed that: (1) membrane-bound activity levels assayed at the cell boundary were high for MAGL and much lower for TAGL and DAGL, regardless of whether cells originated from fasted or fed rats; (2) the stimulatory effects of serum were likewise similar in the fasted and the fed states; (3) isolated cardiomyocytes exhibited no constitutive secretion of active enzyme; and (4) factors determining the variations in amounts of heparin-releasable enzyme in response to nutritional changes appeared to be related to the pre-existing high (in the fasted state) or low (in the fed state) intracellular content in enzymatic activities, supporting the proposal that the secretion of active lipoprotein lipase involves disruption of intracellular vesicles and exocytosis of the enzyme, without its accumulation in the plasma membrane. On a functional basis, the results emphasize the heterogenous nature of the LPL enzymatic complex.  相似文献   

12.
Incubation of rat or human post-heparin plasma with [3H]dolichol incorporated in liposomes consisting of dioleoyl phosphatidylcholine:dioleoyl phosphatidylethanolamine (3:1) resulted in the formation of radioactive dolichyl oleate. Non-heparinized plasma did not esterify dolichol, and, hence, the enzyme involved is probably associated with the cell surface and released into the blood by heparin. The major location of this activity was the liver, and, therefore, a partial purification of the enzyme from heparinized rat liver perfusates was performed using DEAE-Sephacel and heparin-Sepharose chromatography. The dolichol acyltransferase activity copurified with hepatic lipase activity in a lipid-protein complex of 350 kDa. Optimal acylation is achieved at pH 7.5 in the presence of 5% plasma and 20 mM Ca2+. Esterification can only be obtained when dolichol is present in a phospholipid bilayer, and the reaction is strongly stimulated by unsaturated phosphatidylethanolamine or phosphatidylserine. Radiolabeling experiments demonstrated that the primary acyl donor is phosphatidylethanolamine from which the fatty acid is transferred exclusively from position 1. Neither cholesterol nor retinol are esterified by the enzyme, and the reaction is not stimulated by acyl-CoA. Both the extracellular localization and the mechanism of transacylation clearly distinguish this new enzyme from the acyl-CoA:dolichol acyltransferase described earlier in microsomes.  相似文献   

13.
This report describes a purification procedure for a cholesteryl ester hydrolase (CEH) from female rat liver microsomes, and some structural, immunological, kinetic, and regulatory properties of the enzyme that distinguish the microsomal CEH from other hepatic cholesteryl ester-splitting enzymes. CEH was purified 12.4-fold from reisolated microsomes using sequential solubilization by sonication, polyethylene glycol precipitation, fractionation with hydroxyapatite, anion exchange chromatography, and chromatography on hydroxyapatite, with an overall yield of 3.2%. CEH activity was purified 141-fold over nonspecific esterase activity and 56-fold over triacylglycerol lipase activity. In sharp contrast with most esterases and lipases, CEH did not bind to concanavalin A-Sepharose and heparin-Sepharose. After polyacrylamide gel electrophoresis, the purified enzyme exhibited two silver-stained bands, but only the protein electroeluted from the low mobility band had CEH activity. Affinity-purified polyclonal antibodies raised to electroeluted CEH inhibited 90% of the activity of liver microsomal CEH and reacted with a 106 kDa protein band on Western blot analysis. This 106 kDa CEH contains a unique N-terminal amino acid sequence. The purified enzyme had optimal activity at pH 6 and no taurocholate requirements, and was inhibited by the serine active site inhibitor phenylmethylsulfonyl fluoride and by free sulfhydryl specific reagents. It hydrolyzed cholesteryl oleate much more efficiently than trioleine, and hydrolytic activity with p-nitrophenyl acetate was higher than with p-nitrophenyl butyrate. These results indicate that rat liver microsomes contain a bile salt-independent catalytic protein that is relatively specific for cholesteryl ester hydrolysis.  相似文献   

14.
Because the onset of triacylglycerol-rich lipoprotein synthesis occurs in guinea pig liver during fetal life, we investigated the microsomal enzyme activities of triacylglycerol synthesis in fetal and postnatal guinea pig liver. Hepatic monoacylglycerol acyltransferase specific and total microsomal activities peaked by the 50th day of gestation and declined rapidly after birth to levels that were virtually unmeasurable in the adult. Peak fetal specific activity was more than 75-fold higher than observed in the adult. The specific activities of fatty acid CoA ligase and lysophosphatidic acid acyltransferase increased 2- to 3-fold before birth; lysophosphatidic acid acyltransferase increased a further 2.6-fold during the first week of life. Specific activities of phosphatidic acid phosphatase, microsomal glycerophosphate acyltransferase, and diacylglycerol acyltransferase varied minimally over the time course investigated. These data demonstrate that selective changes occur in guinea pig hepatic microsomal activities of triacylglycerol synthesis before birth. Because of an approximate 11-fold increase in hepatic microsomal protein between birth and the adult, however, major increases in total microsomal activity of all the triacylglycerol synthetic activities occurred after birth. The pattern of monoacylglycerol acyltransferase specific and total microsomal activities differs from that of the rat in occurring primarily during the last third of gestation instead of during the suckling period. This pattern provides evidence that hepatic monoacylglycerol acyltransferase activity probably does not function to acylate 2-monoacylglycerols derived from partial hydrolysis of diet-derived triacylglycerol.  相似文献   

15.
In an earlier report we described the identification of an alpha-N-acetylglucosaminyl phosphodiesterase that is capable of cleaving the outer phosphodiester-linked alpha-N-acetylglucosamine residues present on the high mannose oligosaccharides of newly synthesized lysosomal enzymes (Varki, A., and Kornfeld, S. (1980) J. Biol. Chem. 255, 8398-8401). We have now purified this enzyme 1800-fold with a 24% yield from rat liver, using subcellular fractionation, differential extraction with Triton X-10, DEAE-cellulose chromatography, heparin-Sepharose chromatography, concanavalin A-Sepharose affinity chromatography, and gel filtration on Sephacryl S-300. The purified preparation is free of lysosomal alpha-N-acetylglucosaminidase. The enzyme exhibited a single form on both the ion exchange and gel filtration steps. It has a broad pH optimum between 6.0-8.0 and is unaffected by divalent cations or reducing agents. The enzyme cleaves alpha-N-acetylglucosamine residues from five different locations on the high mannose oligosaccharide. In the case of molecules with one phosphodiester, the rate of cleavage is not affected by the size of the underlying oligosaccharide or the presence or absence of an asparagine-linked peptide. Molecules with two phosphodiesters are cleaved in a nonrandom manner. The enzyme has no activity toward p-nitrophenyl-alpha-N-acetylglucosamine but is capable of cleaving phosphodiester-linked N-acetylglucosamine in molecules such as UDP-N-acetylglucosamine, indicating that it can only hydrolyze N-acetylglucosamine residues that are alpha-linked to a phosphate group.  相似文献   

16.
A procedure is presented for the purification of nucleosidediphosphatase (nucleosidediphosphate phosphohydrolase, EC 3.6.1.6) of rat liver by affinity chromatography using metal conjugated to epoxy-activated Sepharose 6B. The enzyme is eluted from the conjugate by a solution of L-histidine. The enzyme, when bound to metal-chelate gel, is active in a suspended form, suggesting that the catalytic site is different from the site that binds to the metal-chelate gels. Substrate specificity and Km value of the enzyme obtained are similar to those of the enzyme obtained from the same sources by a conventional procedure, indicating that the metal-chelate affinity chromatography does not bring about any substantial change in the catalytic properties.  相似文献   

17.
1. The lipolytic activities that sequentially hydrolyze tri-, di- and monoacylglycerol in rat post-heparin heart effluents were examined. 2. Properties of triacylglycerol lipase (TAGL) activity were typical of lipoprotein lipase. Diacylglycerol lipase (DAGL) behaved similarly to TAGL, suggesting that both activities refer to the same catalytic entity. 3. Differences, particularly in thermal stability, between TAGL and DAGL activities on one hand, and monoacylglycerol lipase (MAGL) activity on the other, may reflect different intrinsic molecular properties. 4. TAGL, DAGL and MAGL activities could not be separated by physical means and appeared to belong to a single unit at the same site on the capillary wall.  相似文献   

18.
K Shaw  J H Exton 《Biochemistry》1992,31(27):6347-6354
Phosphoinositide phospholipase C (PLC) activity extracted from bovine liver plasma membranes with sodium cholate was stimulated by GTP gamma S-activated G alpha q/G alpha 11, whereas the enzyme from liver cytosol was not. The membrane-associated PLC was subjected to chromatography on heparin-Sepharose, Q Sepharose, and S300HR, enabling the isolation of the G-protein stimulated activity and its resolution from PLC-gamma and PLC-delta. Following gel filtration, two proteins of 150 and 140 kDa were found to correspond to the activatable enzyme. These proteins were identified immunologically as members of the PLC-beta family and were completely resolved by chromatography on TSK Phenyl 5PW. The 150-kDa enzyme was markedly responsive to GTP gamma S-activated alpha-subunits of G alpha q/G alpha 11 or to purified Gq/G11 in the presence of GTP gamma S. The response of this PLC was of much greater magnitude than that of the 140-kDa enzyme. The partially purified 150-kDa enzyme showed specificity for PtdIns(4,5)P2 and PtdIns4P as compared to PtdIns and had an absolute dependence upon Ca2+. These characteristics were similar to those of the brain PLC-beta 1. The immunological and biochemical properties of the 150-kDa membrane-associated enzyme are consistent with its being the PLC-beta isozyme that is involved in receptor-G-protein-mediated generation of inositol 1,4,5-triphosphate in liver.  相似文献   

19.
The purpose of this study was to characterize the lipolytic activities released by heparin from rat livers. Heparin perfusates of rat livers degraded monooleoylglycerol, trioleoylglycerol and phosphatidylcholine in emulsions as well as in chylomicrons, chylomicron remnants, low-density lipoprotein/high-density lipoprotein-1 (LDL/HDL-1) and high-density lipoprotein-2 (HDL-2). The preferred substrate was mono-oleoylglycerol. Heparin perfusates were separated by chromatography on either heparin-Sepharose or N-desulphated, N-acetylated heparin-Sepharose into at least two related lipases which differed in their ability to hydrolyse HDL-2 phosphatidylcholine, but not in their ability to degrade mono-oleoylglycerol, trioleoylglycerol and phosphatidylcholine in emulsions. The sodium dodecyl sulphate (SDS)/polyacrylamide-gel-electrophoretic patterns of heparin perfusates purified on either normal or N-desulphated N-acetylated heparin-Sepharose were the same, despite differences in their ability to degrade HDL-2 phosphatidylcholine. There was a single band of Mr 56000 without 2-mercaptoethanol in the SDS disruption buffer and three major bands, of Mr 62000, 59000 and 56000, with 2-mercaptoethanol present. When mono-oleoylglycerol lipase was purified 161-fold, there was a concomitant enrichment of the Mr-56000 protein.  相似文献   

20.
We have previously demonstrated that infusion of Intralipid to rats causes a pronounced increase of the lipoprotein lipase activity in the liver. In this paper we study where in the liver this lipoprotein lipase is located. When isolated livers from Intralipid-treated rats were perfused with heparin, substantial amounts of lipoprotein lipase were released into the perfusate. The identity of the lipase activity was demonstrated by specific inhibition with antisera to lipoprotein lipase, and to hepatic lipase, respectively, and by separation of the two lipase activities by chromatography on heparin-Sepharose. We have also studied the localization of both enzymes by an immunostaining procedure based on post-embedding incubation of ultrathin tissue sections with specific antibodies which were then visualized using protein A-colloidal gold complexes. There was no marked difference in localization for the two enzymes which were both seen at the luminal side of endothelial cells, at the interdigitations of the space of Disse and inside both hepatocytes and endothelial cells. Thus, lipoprotein lipase is present in the liver in positions similar to where the functional pool of hepatic lipase is located and analogous to where lipoprotein lipase is found in extrahepatic tissues. These results raise the possibility that the enzyme has a functional role in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号