首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light and electron microscopic observations were made on the lateral line organs of the free neuromasts of the goby Bathygobius fuscus and the canal neuromasts of the cardinal fish Apogon cyanosoma. As in other lateral line systems, each neuromast consists of hair cells, supporting cells and mantle supporting cells, the whole being covered by a cupula. In B. fuscus the free neuromasts are mounted on papillae and have hair cells with stereocilia up to 2.5 μm long and a single kinocilium at least 25 μm long. Each neuromast is covered by a vane-like cupula that can be divided into two regions. The central region over the sensory area contains columns of myelin-like figures. These figures are absent from the outer region covering the mantle. The canal neuromasts of A. cyanosoma are diamond-shaped with up to 1,500 hair cells. The cupula is unusual in having a channel that lies over the sensory region. The hair cells have up to 45 stereocilia, the tallest reaching 2.5 μm, and a kinocilium at least 5 μm long. Tip links are shown for the first time between rows of stereocilia of the hair cells of lateral line neuromasts. The presence of tip links has now been demonstrated for all acousticolateral hair cell systems.  相似文献   

2.
Summary Serial sections of the vestibular ampullae of two species of fish and one species of frog were investigated by electron microscopy. The kinocilium is the only connection between the sensory cells and the auxiliary structure (cupula). The cupula possesses canals that traverse its entire height. Each canal contains a single kinocilium in its proximal part; distally, it is filled with material that stains with colloidal silver. The matrix of the cupula consists of filaments running perpendicular to the canals. These filaments do not stain with colloidal silver. The kinocilium is connected to the wall of the canal via structures that differ in the studied species of fish and frog. The filamentous links between the kinocilium and the longest stereovilli of the sensory hair bundle are similar in all the investigated species. The stereovilli are interconnected by basal and shaft links, and by horizontal and oblique tip connectors, similar to those described by other authors for macula organs and the organ of Corti, although differences in structural details, especially of the horizontal tip and the shaft connectors, are present. Some of these are species specific and some are related to the position of the sensory cell in the epithelium and/or specific to the organ (ampulla or macula organ). Some attachment sites of the links are associated with osmiophilic submembranous material. These differences in the structure, distribution and attachment sites of the links are possibly of functional importance.  相似文献   

3.
Each receptor cell in the sensory macula bears a number of stereocilia and one peripherally located kinocilium; in the two halves of the macula, the kinocilia lie on opposite sides of their associated stereocilia. The morphological axes of the receptor cells are approximately parallel to the long axis of the papilla. The gelatinous cupula overlying the macula extends almost to the opposite wall of the papilla. These structural features are discussed in connection with both the proposed function of the papilla as a vibration detector and the possible evolutionary relationships with other acousticolateralis receptors.  相似文献   

4.
The inner ear of five species of hagfishes was examined with different light and electron microscopical techniques. In all species, the labyrinth contains a single macula and two cristae, in a single semicircular canal. The macula consists of a horizontal, a middle vertical and a posterior horizontal component. Each component is covered by numerous round statoconia. The ring-shaped cristae have very long kinocilia, but lack a proper cupula. The sensory epithelia show signs of regeneration, indicated by the presence of mitoses and apoptotic hair cells.  相似文献   

5.
Jeanne M. L. Selker 《Protoplasma》1988,147(2-3):178-190
Summary The three-dimensional structure of uninfected tissue in the central infected region of soybean nodules has been studied using several methods. Transverse and longitudinal sections have been examined. A view of the surface of the central region has been obtained by partially clearing nodules and removing their cortex. A three-dimensional reconstruction of the central region has been assembled using transverse sections. It was found that some of the uninfected cells participate in forming characteristic structural aggregates. A centrally located spherical region with a diameter half that of the entire infected region is filled with interconnected aggregates of uninfected cells. A set of branching interconnected planes of uninfected cells emanate from the sphere and extend out to the surface of the infected region. The planes are oriented generally in a longitudinal direction but are sometimes at other angles. These planes divide the nodule into compartments of various sizes and shapes. The planes are perforated by irregularly shaped groups of infected cells. Uninfected cells also often occur arranged in lines oriented approximately radially in the central region. Irregularly shaped fine aggregates of uninfected cells occur outside the central sphere formation and are interconnected by narrow lines of uninfected cells. All of these types of formations could provide uninfected paths all or part of the way from the center of the central region to the cortex. The planes and lines often contain uninfected cells elongated perpendicular to the surface of the central region, suggesting that the routes may serve in the transport of substances from the inside to the surface of the central region. The distribution of plasmodesmata also appears to favor transport from one uninfected cell to another.Abbreviation TER tubular endoplasmic reticulum  相似文献   

6.
In the present review, signal-processing capabilities of the canal lateral line organ imposed by its peripheral architecture are quantified in terms of a limited set of measurable physical parameters. It is demonstrated that cupulae in the lateral line canal organ can only partly be described as canal fluid velocity detectors. Deviation from velocity detection may result from resonance, and can be characterized by the extent to which a single dimensionless resonance number, N r , exceeds 1. This number depends on four physical parameters: it is proportional to cupular size, cupular sliding stiffness and canal fluid density, and inversely proportional to the square of fluid viscosity. Situated in a canal, a cupula may benefit from its resonance by compensating for the limited frequency range of water motion that is efficiently transferred into the lateral line canal. The peripheral transfer of hydrodynamic signals, via canal and cupula, leads to a nearly constant sensitivity to outside water acceleration in a bandwidth that ranges from d.c. to a cut-off frequency of up to several hundreds of Hertz, significantly exceeding the cut-off frequency of the lateral line canal. Threshold values of hydrodynamic detection by the canal lateral line organ are derived in terms of water displacement, water velocity, water acceleration and water pressure gradients and are shown to be close to the detection limits imposed by hair cell mechano-transduction in combination with the physical constraints of peripheral lateral line signal transfer. The notion that the combination of canal- and cupular hydrodynamics effectively provides the lateral line canal organ with a constant sensitivity to water acceleration at low frequencies so that it consequently functions as a low-pass detector of pressure gradients, supports the appropriateness of describing it as a sense organ that “feels at a distance” (Dijkgraaf in Biol Rev 38:51–105, 1963)  相似文献   

7.
The sagitta otolithic membrane of Fundulus heteroclitus consists of two different zones. A structured zone (gelatinous layer), which usually exhibits a reticulated or honeycomb-like architecture, is composed of tightly arranged fibrous material and covers only the sensory region of the macula. The gelatinous layer extends from the otolith surface to the tips of the sensory hairs, and probably functions primarily as a mechanoreceptor. The arrangement of this zone is closely associated with specific overlying structural features of the otolith surface and may also influence the pattern of mineral deposition to some degree. A nonstructured zone (subcupular meshwork) consists of fibers in very loose networks and covers both sensory and nonsensory regions of the macula. Over the sensory region, some of this fibrous material extends from the epithelial surface, through pores in the gelatinous layer, to the surface of the overlying otolith. In the nonsensory region, fibers of the subcupular meshwork are relatively more numerous and extend around the peripheral margin of the otolith. Evidence is presented which suggests that the fibrous material of the subcupular meshwork is incorporated into the otolith as an organic matrix constituent. New aspects on the ultrastructure of the otolith are presented and discussed.  相似文献   

8.
Summary The filum terminale, or terminal portion of the spinal cord, was studied in normal adult frogs (Rana pipiens) by means of light and electron microscopy. Astroglial cells are the predominant elements in this region. The rostral portion of the filum terminale consists mainly of (1) a peripheral dense ring of myelinated and some unmyelinated nerve fibers, and processes of astrocytes terminating at the subpial space; (2) an intermediate zone, in which astrocytes are the main cellular elements in addition to a few degenerated neurons; and (3) a central region where the central canal is lined by dark and light ependymal cells. In the caudal portion of the filum terminale, the amount of neuropil is greatly reduced. This region is formed mainly by astrocytic glial cells and very few neuronal elements. The central canal in the caudal portion is located ventrally and contains a lining consisting almost exclusively of dark ependymal cells.  相似文献   

9.
A striking feature of vestibular hair cells is the polarized arrangement of their stereocilia as the basis for their directional sensitivity. In mammals, each of the vestibular end organs is characterized by a distinct distribution of these polarized cells. We utilized the technique of post-fixation transganglionic neuronal tracing with fluorescent lipid soluble dyes in embryonic and postnatal mice to investigate whether these polarity characteristics correlate with the pattern of connections between the endorgans and their central targets; the vestibular nuclei and cerebellum. We found that the cerebellar and brainstem projections develop independently from each other and have a non-overlapping distribution of neurons and afferents from E11.5 on. In addition, we show that the vestibular fibers projecting to the cerebellum originate preferentially from the lateral half of the utricular macula and the medial half of the saccular macula. In contrast, the brainstem vestibular afferents originate primarily from the medial half of the utricular macula and the lateral half of the saccular macula. This indicates that the line of hair cell polarity reversal within the striola region segregates almost mutually exclusive central projections. A possible interpretation of this feature is that this macular organization provides an inhibitory side-loop through the cerebellum to produce synergistic tuning effects in the vestibular nuclei. The canal cristae project to the brainstem vestibular nuclei and cerebellum, but the projection to the vestibulocerebellum originates preferentially from the superior half of each of the cristae. The reason for this pattern is not clear, but it may compensate for unequal activation of crista hair cells or may be an evolutionary atavism reflecting a different polarity organization in ancestral vertebrate ears.  相似文献   

10.
Improved structural and functional interpretations regarding the dermal skeleton of Paleozoic lungfishes (Dipnoi) can be derived from a direct comparison of Recent and fossil tissues. In particular, skin from the snout of adult Australian lungfish (Neoceratodus forsteri) contains horizontal plexuses and vertical capillary loops which resemble in structure, size and density components of the cosmine layer in such Paleozoic lungfishes as Dipterus valenciennesi and Chirodipterus australis. In addition to these dermal papillae, the skin of the snout also contains ampullary electroreceptors, goblet cells, compound mucus glands, and terminal branches and openings of the mechanoreceptive lateral line system. Pore canal systems of fossil lungfishes previously have been interpreted as housing electroreceptors or other cutaneous sense organs of the lateral line system. In contrast, we regard pore canal systems as evidence of a complex cutaneous vasculature involved in the deposition of mineralized tissues. Prevailing ideas on the structure and biological role of cosmine are reinterpreted, including the theory that electroreceptors played an important part in the origin of the dermal skeleton.  相似文献   

11.
The mechanical frequency selectivity of the cupula located in the supraorbital lateral line canal and the frequency selectivity of the hair cells driven by the cupula were measured simultaneously in vivo. Laser interferometry was used to measure cupular mechanics and extracellular receptor potentials were recorded to determine hair cell frequency selectivity. Results were obtained from two teleost fish species, the ruffe (Acerina cernua L.), a European temperate zone freshwater fish, and the tropical African knife fish (Xenomiystus nigri). In both species cupular displacement grows with increasing frequency of canal fluid displacement, reaching a maximum at 115 Hz in the ruffe and at 460 Hz in the African knife fish. Cupular best frequencies were independent of temperature. Cut-off frequencies of hair cell frequency selectivity were found to depend on temperature with a Q10 of 1.75, ranging from 116 Hz (4 degrees C) to 290 Hz (20 degrees C), as established in the ruffe. At normal habitat temperatures of the two fish species (ruffe, 4 degrees C; African knife fish, 28 degrees C), this results in hair cell cut-off frequencies that match the two different cupular best frequencies remarkably well. This match suggests adjusted signal transfer in these two peripheral stages of canal lateral line transduction.  相似文献   

12.
Summary The mature male nephridia ofPolydora ligni andP. websteri (Polychaeta: Spionidae) are segmental organs composed of a ciliated nephrostome connected to a nephridial canal that crosses the intersegmental septum, expands into a large modified part extending dorsally through the coelom and subsequently narrows into a canal terminating in a dorsal nephridiopore. The nephridial canal is ciliated throughout and is composed of several cell types. Cells in the expanded region of the nephridia of both species contain large urn-shaped depressions filled with long microvilli. InP. ligni, one section of a nephridium contains cells packed with electron-dense granules that are not observed inP. websteri.The spermatophores ofPolydora ligni are composed of a central sperm mass surrounded by a layer of randomly oriented tubules that form a capsule around the sperm and taper into a long thin tail. These tubules are identical in dimensions to the microvilli present in parts of a nephridium and apparently are derived from these microvilli. The spermatophore capsule ofP. websteri is composed of similar tubules also presumed to originate from nephridial microvilli.The microvilli in nephridia of both species are surrounded with a glycocalyx that may function as an adhesive to hold the spermatophore capsule together. This glycocalyx may also function as a species specific message when encountered by a receptive female.Contribution Number 179 from Harbor Branch Foundation, Inc.  相似文献   

13.
An experimental procedure is described which consists of cutting the canal duct, inserting a micropipette and administering known volumetric displacements to the cupula. The cupula is made visible by dying the endolymph. Known displacements are administered to the cupula, and the time constant of the return to its equilibrium position is measured. With this information, the stiffness of the cupula is calculated. The experiment was successfully carried out on five White King pigeons. The mean stiffness found in somewhat less than other results reported in the literature, and reasons for this discrepancy are noted.  相似文献   

14.
Ears from several species of carcharhinid sharks were studied by gross dissection, light microscopy, transmission electron microscopy, and scanning electron microscopy. Structures along a possible sound transmission path to the ear are described, but main consideration is given to the structure of the macula neglecta. The macula neglecta is composed of two patches of sensory epithelium which line part of the posterior canal duct. In an adult shark the larger of these contains 224,000 sensory hair cells oriented so as to detect forces directed posteroventrolaterally in the duct. The smaller patch contains 43,000 hair cells oriented so as to detect oppositely directed forces. These receptor cells project through numerous small terminals to a total for both patches of 4,700 myelinated nerve fibers. Cytostructural variations throughout the hair cell population are also reported. Estimated acoustic properties of the tissues in this complex and the processing potential of the neural elements are interpreted as suggestive of auditory function. A mechanism based on the geometry of the receptor arrays is proposed to explain behaviorally observed instantaneous sound localization from the farfield. Evolution of the macula neglecta is reviewed, and evidence for homology of the macula neglecta and amphibian papilla is presented.  相似文献   

15.
A contribution to knowledge of the compartments and the fascial and septal formations of the popliteal fossa in the human fetus and the adult. A study was made in human fetuses from the 3rd month onwards, newborn and the adult of the fascial and septal formations and the compartments of the popliteal fossa. Observations of serial sections of the knee of human fetuses, of macroscopic preparations of the knee of newborns and of ultrasound images of the popliteal fossa in adults showed that: the fascial formation covering the popliteal fossa consists of the popliteal fascia and the superficial fascia. The bud of the popliteal fascia is observable in the 3-month fetus as a layer of thin fibrillar connective tissue which is thicker in the tracts between the muscle buds. At birth the popliteal fascia is clearly a separate anatomical entity of continuous laminar structure which is thicker in the tracts between the muscles and thinner where it covers them. The superficial fascia becomes evident in fetuses at a later stage (6th month) in the form of a thin lamina in the frontal plane which at birth is well defined and observable as a thin continuous line deep below the subcutaneous layer. The septal formation consists of four septa: two in the sagittal plane (lateral and medial) and two in the frontal plane (lateral and medial). The bud of these septa appears in 4-month fetuses after the appearance of the popliteal fascia. They branch off from the thicker connective areas between the muscles buds as connective prolongations which later assume a laminar aspect and eventually become compact and form septa. In at-term fetuses and newborns these septal formations are clearly recognizable as antomical entities, which branch off from the deep surface of the thicker tracts of the popliteal fascia and are inserted into the femur. The relationships and connections with the muscular groups are also clearly visible. The organization and demarcation of the compartments, which is already delineated in the 6-month fetus, seems to be completed at birth, considering the presence of the superficial fascia, the popliteal fascia and the septa. It is possible to distinguish a superficial compartment between the popliteal and the superficial fascia an a deep compartment between the frontal septa, the skeletal plane and the popliteal fascia. This deep compartment is clearly subdivided by the two sagittal septa into three sectors (medial, intermediate and lateral). The medial and lateral sectors contain muscles, while the intermediate compartment contains the vasculonervous bundle and the popliteal adipose body.  相似文献   

16.
Micropylar apparatuses in insects are specialized regions of the eggshell through which sperm enters the oocyte. This work is an ultrastructural study and deals with the structure and morphogenesis of the micropylar appendage in the hymenopteran Eurytoma amygdali. The micropylar appendage is a 130 mum long cylindrical protrusion located at the posterior pole of the egg, unlike other insects i.e. Diptera. in which the micropylar apparatus is located at the anterior pole. In mature eggs there is a 0.4 mum wide pore (micropyle) at the tip of the appendage leading to a 6 mum wide micropylar canal. The canal contains an electron-lucent substance, it travels along the whole appendage and finally reaches the vitelline membrane of the oocyte. The vitelline membrane is covered by a wax layer and an electron-lucent layer, whereas the chorion surrounding the canal consists of a granular layer (fine and rough) and a columnar layer. The morphogenesis of the appendage starts in immature follicles: four central cells located at the posterior tip of the oocyte near the vitelline membrane, differing morphologically from the adjacent follicle cells. These central cells degenerate during early chorionic stages, thus assisting in the formation of the micropylar canal. The adjacent, peripherally located cells secrete the electron-lucent substance which fills the canal and at the same time, the fine granular layer is formed starting from the base towards the tip of the appendage. The secretion persists at late chorionic stages and results in the formation of the chorion around the micropylar canal. The extremely long (compared to other insects) micropylar appendage seems to facilitate the egg passage through the very thin and long ovipositor. The structure and morphogenesis of this appendage differs significantly from the micropylar apparatuses studied so far in other insects i.e. Diptera, and may reflect adaptational and evolutionary relationships.  相似文献   

17.
Contemporary study of molecular patterning in the vertebrate midbrain is handicapped by the lack of a complete topological map of the diverse neuronal complexes differentiated in this domain. The relatively less deformed reptilian midbrain was chosen for resolving this fundamental issue in a way that can be extrapolated to other tetrapods. The organization of midbrain centers was mapped topologically in terms of longitudinal columns and cellular strata on transverse, Nissl-stained sections in the lizard Gallotia galloti. Four columns extend along the whole length of the midbrain. In dorsoventral order: 1) the dorsal band contains the optic tectum, surrounded by three ventricularly prominent subdivisions, named griseum tectale, intermediate area and torus semicircularis, in rostrocaudal order; 2) a subjacent region is named here the lateral band, which forms the ventral margin of the alar plate and also shows three rostrocaudal divisions; 3) the basal band forms the basal plate or tegmentum proper; it appears subdivided into medial and lateral parts: the medial part contains the oculomotor and accessory efferent neurons and the medial basal part of the reticular formation, which includes the red nucleus rostrally; the lateral part contains the lateral basal reticular formation, and includes the substantia nigra caudally; 4) the median band contains the ventral tegmental area, representing the mesencephalic floor plate. The alar regions (dorsal and lateral) show an overall cellular stratification into periventricular, central and superficial strata, with characteristic cytoarchitecture for each part. The lateral band contains two well developed superficial nuclei, one of which is commonly misidentified as an isthmic formation. The basal longitudinal subdivisions are simpler and basically consist of periventricular and central strata.  相似文献   

18.
The structure of the longitudinal zebra stripes on the thorax of adult Zaprionus vittiger has been investigated by light-, polarization-, transmission electron-, and scanning electron microscopy. Each stripe consists of a central white stripe of about 50 μm width and two lateral dark brown stripes about 30 μm wide. Three different types of trichomes occur: Very long bent trichomes of the grooved-type, long bent trichomes of the crested-type, and short straight trichomes. The central white stripe contains neither bristle organs nor short straight trichomes but carries many long bent trichomes most of which are of the grooved type, contain two cavities and polarize the light in the polarization microscope. The dark brown stripes carry bristle organs and many trichomes of the short and straight-type. Bent trichomes of the crested-type are found on the whole zebra stripe at about equal frequencies; they contain no cavities and do not polarize the light. The cuticle of the dark stripes is underlain by pigment cells. It is suggested that the pigment granules in the epidermal cells cause the dark color of the dark brown stripes, whereas the form and structure of the bent grooved type trichomes cause the white color of the central stripe.  相似文献   

19.
Summary Intracellular recordings were obtained from primary and secondary sensory hair cells in the anterior transverse crista segment of the squid (Alloteuthis subulata) statocyst during imposed displacements of the overlying cupula. The secondary sensory hair cells were depolarized by ventral movements of the cupula and hyperpolarized by dorsal cupula movements. The displacement/response curve was asymmetric around the zero position and sigmoidal in shape, similar to that already described for vertebrate hair cells. The cells are estimated to have a sensitivity of at least 0.5 mV per degree angle of cilia displacement. The responses showed pronounced adaptation and could be blocked by bath applied alcohols, such as heptanol or octanol, or by high concentrations of aminoglycosides.The primary sensory hair cells were depolarized by dorsal movements of the cupula, usually responding with a burst of action potentials. The displacement/response curve was also sigmoidal in shape and the firing pattern showed strong adaptation to maintained displacements of the cupula.The cupula itself appeared to be irregular in shape, extending much further into the statocyst cavity in its central part than at its edges. This is likely to result in differences in the responses of the underlying hair cells along the length of the crista ridge.  相似文献   

20.
1. Proteoglycan aggregates from bovine nasal cartilage were studied by using electron microscopy of proteoglycan/cytochrome c monolayers. 2. The aggregates contained a variably long central filament of hyaluronic acid with an average length of 1037nm. The proteoglycan monomers attached to the hyaluronic acid appeared as side chain filaments varying in length (averaging 249nm). They were distributed along the central filament at an average distance of about 36nm. 3. Chondroitin sulphate side chains were removed from the proteoglycan monomers of the aggregates by partial chondroitinase digestion. The molecules obtained had the same general appearance as intact aggregates. 4. Proteoglycan aggregates were treated with trypsin and the largest fragment, which contains the hyaluronic acid, link protein and hyaluronic acid-binding region, was recovered and studied with electron microscopy. Filaments that lacked the side chain extensions and had the same length as the central filament in the intact aggregate were observed. 5. Hyaluronic acid isolated after papain digestion of cartilage extracts gave filaments with similar length and size distribution as observed for the central filament both in the intact aggregate and in the trypsin digests. 6. Umbilical-cord hyaluronic acid was also studied and gave electron micrographs similar to those described for hyaluronic acid from cartilage. However, the length of the filament was somewhat shorter. 7. The electron micrographs of both intact and selectively degraded proteoglycans corroborate the current model of cartilage proteoglycan structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号