首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ingesting phenolic phytochemicals in many plant products may promote health, but the effects of phenolic phytochemicals at the cellular level have not been fully examined. Thus, it was determined if the tea phenolic phytochemical, epigallocatechin gallate (EGCG), protects U937 human pro-monocytic cells against the nitrogen free radical, nitric oxide (*NO). Cells were incubated for 4-6 h with 500 microM S-nitrosoglutathione (GSNO), which generates *NO, but this did not induce single-strand breaks in DNA. Nevertheless, 82 +/- 4% of GSNO-treated cells, compared to only 39 +/- 1% of untreated cells, were arrested in the G(1)-phase of the cell cycle. However, dosing the GSNO-treated cells with 9, 14, or 18 microg/ml of EGCG resulted in only 74 +/- 8%, 66 +/- 1%, and 43 +/- 3% of the cells, respectively, in the G(1)-phase. Exposing cells to GSNO also resulted in the emergence of a sub-G(1) apoptotic cell population numbering 14 +/- 3%, but only 5 +/- 2%, 5 +/- 1%, and 2 +/- 0% upon dosing of the GSNO-treated cells with 9, 14, and 18 microg/ml of EGCG, respectively. Furthermore, exposing cells to GSNO resulted in greater cell surface binding of annexin V-FITC, but binding was 41-89% lower in GSNO-treated cells dosed with EGCG. Collectively, these data suggest that *NO or downstream products induced cell cycle arrest and apoptosis that was not due to single-strand breaks in DNA, and that EGCG scavenged cytotoxic *NO or downstream products, thus reducing the number of cells in a state of cell cycle arrest or apoptosis.  相似文献   

2.
Park HJ  Shin DH  Chung WJ  Leem K  Yoon SH  Hong MS  Chung JH  Bae JH  Hwang JS 《Life sciences》2006,78(24):2826-2832
Cell detachment from extracellular matrix is closely related to induction of apoptosis. Epigallocatechin gallate (EGCG) has been shown to have antioxidant effect and to protect hypoxia-induced damage. We investigated whether EGCG reduced hypoxia-induced apoptosis and cell detachment in HepG2 cells. EGCG prevented cell death by hypoxia (0.5% O2) in a dose-dependent manner (hypoxic cell viability, 54.67%). RT-PCR and caspase3 activity assay showed that the hypoxia-induced cell death was caused by apoptosis increasing mRNA level of BAX, CASP3, and caspase3 activity. EGCG reduced increase of these mRNA and caspase3 activity. Western blot analysis and immunocytochemistry showed that EGCG increased cell adhesion proteins including E-cadherin (CDH1), tumor-associated calcium signal transducer 1 (TACSTD1), and protein tyrosine kinase 2 (PTK2) decreased by hypoxia. Hypoxia-induced apoptosis in HepG2 cells, and EGCG contributed to the HepG2 cell survival by attenuating the apoptosis.  相似文献   

3.
4.
Lipopolysaccharide (LPS) has been implicated as the bacterial component responsible for much of the endothelial cell injury/dysfunction associated with Gram-negative bacterial infections. Protein synthesis inhibition is required to sensitize the endothelium to lipopolysaccharide-induced apoptosis, suggesting that a constitutive or inducible cytoprotective protein(s) is required for endothelial survival. We have identified two known endothelial anti-apoptotic proteins, c-FLIP and Mcl-1, the expression of which is decreased markedly in the presence of cycloheximide. Decreased expression of both proteins preceded apoptosis evoked by lipopolysaccharide + cycloheximide. Caspase inhibition protected against apoptosis, but not the decreased expression of c-FLIP and Mcl-1, suggesting that they exert protection upstream of caspase activation. Inhibition of the degradation of these two proteins with the proteasome inhibitor, lactacystin, prevented lipopolysaccharide + cycloheximide-induced apoptosis. Similarly, lactacystin protected against endothelial apoptosis induced by either tumor necrosis factor-alpha or interleukin-1beta in the presence of cycloheximide. That apoptosis could be blocked in the absence of new protein synthesis by inhibition of the proteasome degradative pathway implicates the requisite involvement of a constitutively expressed protein(s) in the endothelial cytoprotective pathway. Finally, reduction of FLIP expression with antisense oligonucleotides sensitized endothelial cells to LPS killing, demonstrating a definitive role for FLIP in the protection of endothelial cells from LPS-induced apoptosis.  相似文献   

5.
Epigallocatechin gallate (EGCG) is a major type of green tea polyphenols and is known to have cancer prevention effect. MicroRNAs (miRNAs) are 19 to 25 nucleotides and are believed to be important in gene regulation. In the present study, the influence of EGCG on the expressions of miRNAs in human cancer cells was investigated as this has not yet been reported. By miRNA microarray analysis, EGCG treatment was found to modify the expressions of some of the miRNAs in human hepatocellular carcinoma HepG2 cells, 13 were up-regulated and 48 were down-regulated. miR-16 is one of the miRNAs up-regulated by EGCG and one of its target genes is confirmed to be the anti-apoptotic protein Bcl-2. EGCG treatment induced apoptosis and down-regulated Bcl-2 in HepG2 cells. Transfection with anti-miR-16 inhibitor suppressed miR-16 expression and counteracted the EGCG effects on Bcl-2 down-regulation and also induction of apoptosis in cells. Results from the present study confirm the role of miR-16 in mediating the apoptotic effect of EGCG and also support the importance of miRNAs in the regulation of the biological activity of EGCG.  相似文献   

6.
Thrombospondin-1, a multi-modular matrix protein is able to interact with a variety of matrix proteins and cell-surface receptors. Thus it is multifunctional. In this work, we examined the role of thrombospondin-1 in ceramide-induced thyroid apoptosis. We focused on the VVM containing sequence localized in the C-terminal domain of the molecule. Primary cultured thyroid cells synthesize thrombospondin-1 depending on their morphological organization. As it leads thyrocytes to organize into monolayers before inducing apoptosis ceramide can modulate this organization. Here, we established that C2-ceramide treatment decreased thrombospondin-1 expression by interfering with the adenylyl cyclase pathway, thus leading to apoptosis. Furthermore, we demonstrated that the thrombospondin-1-derived peptide 4N1 (RFYVVMWK) abolished ceramide-induced thyroid cell death by preventing intracellular cAMP levels from dropping. Finally, we reported that 4N1-mediated inhibition of ceramide-induced apoptosis was consistently associated with a down-regulation of the caspase-3 processing. Integrin-associated protein receptor (IAP or CD47) was identified as a molecular relay mediating the observed 4N1 effects. Taken together, our results shed light for the first time on anti-apoptotic activities of the thrombospondin-1-derived peptide 4N1 and provide new information on how thrombospondin-1 may control apoptosis of non-tumoral cells.  相似文献   

7.
Bcl-2 protects cells from cytokine-induced nitric-oxide-dependent apoptosis   总被引:2,自引:0,他引:2  
 Cytokine-mediated cell death in tumor cells can be achieved through endogenous nitric oxide (NO) from within tumor cells or exogenous NO from either activated macrophages or endothelial cells. The purpose of this study was to determine the role of Bcl-2 in NO-mediated apoptosis. The incubation of murine L929 and NIH3T3 cells with interleukin-1α (IL-1α) and interferon γ (IFNγ) induced high endogenous NO production only in the L929 cells that also underwent apoptosis. NIH3T3 cells were not resistant to NO-mediated apoptosis. In fact, the incubation of L929 and NIH3T3 cells with exogenous NO derived from NO donors, sodium nitroprusside, or S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced death, characterized by typical apoptotic morphology and DNA fragmentation, in both cell types, but to a higher degree in NIH3T3 cells than in the L929 cells. We then measured the effect of Bcl-2 expression on exogenous NO-induced apoptosis. At both the mRNA and protein levels, L929 fibroblasts expressed higher levels of endogenous mouse Bcl-2 than did NIH3T3 cells. At the same time, L929 cells were much more resistant to exogenous NO-induced cell death than were NIH3T3 cells. The inverse correlation between mouse Bcl-2 expression and sensitivity to exogenous NO-mediated cell death was also found in the murine K-1735 melanoma C-23 and X-21 clonal populations. Transfection of both NIH3T3 cells and L929 cells with the human bcl-2 gene led to resistance to both exogenous and endogenous NO-mediated apoptosis. These data demonstrate that NO-mediated apoptosis can be suppressed by expression of Bcl-2, suggesting that abnormal expression of Bcl-2 may influence the efficacy of tumor immunotherapy. Received: 28 June 1998 / Accepted: 23 August 1996  相似文献   

8.
Background: Carnosol is an ortho-diphenolic diterpene with excellent antioxidant potential. The present study was designed to identify the protective role of carnosol against spinal cord injury (SCI)-induced oxidative stress and inflammation in Wistar rats. Methods: In the present study, oxidative stress status was determined through estimating total antioxidant capacity, total oxidant status, lipid peroxide content, protein carbonyl and sulfhydryl levels, reactive oxygen species (ROS), antioxidant status (superoxide-dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase). Inflammatory effects were determined by analyzing the expression of NF-κB and COX-2 through Western blot analysis. Further, carnosol-mediated redox homeostasis was analyzed by determining p-AKT and Nrf-2 levels. Results: SCI resulted in a significant increase in oxidative stress status through increased ROS generation, total oxidant levels, lipid peroxide content, protein carbonyl and sulfhydryl levels. The antioxidant status in SCI rats was significantly reduced, indicating imbalance in redox status. In addition, the expression of NF-κB and COX-2 was significantly upregulated, while p-AKT and Nrf-2 levels were downregulated in SCI rats. However, treatment with carnosol showed a significant enhancement in the antioxidant status with concomitant decline in oxidative stress parameters. Further, carnosol treatment regulated the key proteins in inflammation and redox status through significant downregulation of NF-κB and COX-2 levels and upregulation of p-AKT and Nrf-2 expression. Conclusion: Thus, the present study shows for the first time on the protective role of carnosol against SCI-induced oxidative stress and inflammation through modulating NF-κB, COX-2 and Nrf-2 levels in Wistar rats.  相似文献   

9.
We describe the effect of (-) epigallocatechin gallate (EGCg), one of catechins known in tea, on the prostacyclin (PGI) production by bovine aortic endothelial cells. The amounts of 6-keto-PGF(1alpha) and Delta(17)-6-keto-PGF(1alpha), stable metabolites of PGI(2) and PGI(3), released in culture medium were measured using gas chromatography/selected ion monitoring (GC/SIM). The prostacyclin production of endothelial cells was increased by EGCg in a dose- and time-dependent manner. The effect by EGCg was stronger than any other catechins (catechin, epicatechin, epigallocatechin, and epicatechin gallate). When endothelial cells incubated with EGCg and arachidonic acid (AA) or eicosapentaenoic acid (EPA), PGI(2), and PGI(3) production were increased greater than those incubated with AA or EPA alone. Furthermore, gallic acid, that also has a pyrogallol structure, increased PGI(2) production. These observations indicate that catechins increase the prostacyclin production and that the pyrogallol structure is significant to this function.  相似文献   

10.
Loss of cardiomyocytes by apoptosis is proposed to cause ventricular remodeling and heart failure. Reactive oxygen species-induced apoptosis of cardiomyocytes has been reported to play an important role in many types of pathological processes of the heart. We investigated whether angiopoietin-1 (Ang1) has direct cytoprotective effects on cardiomyocytes against oxidative stress. Cultured H9c2 cells (cardiomyocytes) were treated with hydrogen peroxide (H(2)O(2)). Apoptosis was evaluated by flow cytometry, TUNEL assay and DNA laddering. The H(2)O(2) treatment caused typical apoptosis of H9c2 cells in a time-dependent manner. Transfection of recombinant adenovirus expressing Ang1 resulted in a sustained phosphorylation of AKT and inhibition of H(2)O(2)-induced apoptosis in H9c2 cells. This effect could be reversed by AKT inhibition. These results suggest that Ang1 protects cardiomyocytes from oxidative stress-induced apoptosis by regulating the activity of AKT.  相似文献   

11.
The mRNA of the mitochondrial uncoupling protein 2 (UCP2) was up-regulated by cryptorchidism, a testicular hyperthermic condition under which germ cells undergo severe apoptosis. We investigated whether UCP2 was able to protect germ cells from hyperthermia-induced apoptosis. UCP2 was predominantly present in elongate spermatids under normal conditions, and was detected in all germ cells with its level significantly increased if the testes were exposed to 43 degrees C for 5 min. Such a short heat exposure was non-lethal and enabled the preconditioned cells to be resistant to apoptosis induced by a longer hyperthermic treatment (15 min). While hyperthermia resulted in oxidative stress in mouse testes, it did not change the total anti-oxidative capacity. Indeed, overexpression of UCP2 in the GC-2 germ cell line protected the cells from radical oxygen species (ROS)-induced apoptosis. Taken together, we propose that UCP2 may represent an effective weaponry used by germ cells to combat ROS-induced apoptosis.  相似文献   

12.
13.
Cardiac c-kit positive cells are cardiac-derived cells that exist within the heart and have a great many protective effects. The senescence of cardiac c-kit positive cells probably leads to cell dysfunction. Bradykinin plays a key role in cell protection. However, whether bradykinin prevents cardiac c-kit positive cells from high-glucose-induced senescence is unknown. Here, we found that glucose treatment causes the premature senescence of cardiac c-kit positive cells. Bradykinin B2 receptor (B2R) expression was declined by glucose-induced senescence. Bradykinin treatment inhibited senescence and reduced intracellular oxygen radicals according to senescence-associated β-galactosidase staining and 2′,7′-dichlorodihydrofluorescein diacetate staining. Moreover, the mitochondrial membrane potential was damaged, as measured by JC-1 staining. The mitochondrial membrane potential was preserved under bradykinin treatment. The concentration of superoxide was decreased, and the concentration of intracellular adenosine triphosphate was increased after bradykinin treatment. Western blot showed that bradykinin leads to AKT and mammalian target of rapamycin (mTOR) phosphorylation and decreased levels of P53 and P16 when compared with glucose treatment alone. Antagonists of B2R, phosphoinositide 3-kinase (PI3K), mTOR, and B2R small interfering RNA prevented the protective effect of bradykinin. P53 antagonist also inhibited the glucose-induced senescence of cardiac c-kit positive cells. In conclusion, bradykinin prevents the glucose-induced premature senescence of cardiac c-kit positive cells through the B2R/PI3K/AKT/mTOR/P53 signal pathways.  相似文献   

14.
The methacrylate monomer 2-hydroxyethyl methacrylate (HEMA) is commonly used in resin-based dental restorative materials. These materials are cured in situ and HEMA and other monomers have been identified in ambient air during dental surgery. In vitro studies have demonstrated a toxic potential of methacrylates, and concerns have been raised regarding possible health effects due to inhalation. In this study we have investigated the mechanisms of HEMA-induced toxicity in the human lung epithelial cell line BEAS-2B. Depletion of cellular glutathione (GSH) and an increased level of reactive oxygen species (ROS) were seen after 2h of exposure, but the levels were restored to control levels after 12h. After 24h, inhibited cell proliferation and apoptotic cell death were found. The results of the Comet assay and the observed phosphorylation of DNA-damage-associated signalling proteins including Chk2, H2AX, and p53 suggest that the toxicity of HEMA is mediated by DNA damage. Further, the antioxidant trolox did not counteract the HEMA-induced cell-cycle arrest, which indicates that the DNA damage is of non-oxidative origin.  相似文献   

15.
16.
Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid which is known to induce diverse cellular responses through at least five G-protein-coupled receptors on various cell types. However, neither the distribution of S1P receptors nor the effects of S1P on multiple myeloma (MM) cells are fully understood. Here, we show that MM cells express the S1P receptors, S1P1, S1P2, and S1P3. Furthermore, S1P protects MM cells against Dex-induced apoptosis. Importantly, S1P upregulates Mcl-1 expression in a time- and concentration-dependent manner in human MM cell lines. Treatment of MM cells with pertussis toxin (PTX), a pan-S1P receptor inhibitor, results in blockage of S1P-induced upregulation of Mcl-1. These data demonstrate that S1P upregulates the expression of Mcl-1 and protects MM cells from Dex-induced apoptosis, providing the preclinical framework for novel therapeutics targeting at both Mcl-1 and/or S1P to improve the patient outcome in MM.  相似文献   

17.
The survival of pancreatic beta cells depends on the balance between external cytotoxic and protective molecular systems. The neuropeptide neurotensin (NT) has been shown to regulate certain functions of the endocrine pancreas including insulin and glucagon release. However, the mechanism of action of NT as well as the identification of receptors involved in the pancreatic functions of the peptide remained to be studied. We demonstrate here that NT is an efficient protective agent of pancreatic beta cells against cytotoxic agents. Both beta-TC3 and INS-1E cell lines and the mouse pancreatic islet cells express the three known NT receptors. The incubation of beta cells with NT protects cells from apoptosis induced either by staurosporine or by IL-1beta. In beta-TC3 cells, NT activates both MAP and PI-3 kinases pathways and strongly reduces the staurosporine or the Il-1beta-induced caspase-3 activity by a mechanism involving Akt activation. The NTSR2 agonist levocabastine displays the same protective effect than NT whereas the NTSR1 antagonist is unable to block the effect of NT suggesting the predominant involvement of the NTSR2 in the action of NT on beta cells. These results clearly indicate for the first time that NT is able to protect endocrine beta cells from external cytotoxic agents, a role well correlated with its release in the circulation after a meal.  相似文献   

18.
《Cell reports》2023,42(8):112961
  1. Download : Download high-res image (205KB)
  2. Download : Download full-size image
  相似文献   

19.

Background

Excessive apoptosis of airway epithelium is reported to induce airway remodeling and inhibited airway epithelium repair is highly associated with development of asthma and chronic obstructive pulmonary disease. Der p 2 is a major allergen derived from Dermatophagoides pteronyssinus and commonly causes airway hypersensitiveness and asthma; however, the connection between Der p 2 and epithelial apoptosis remains unclear. This study was aimed to explore whether Der p 2 induces apoptosis of airway epithelial cells and the underlying mechanisms.

Results

Our results showed that recombinant Der p 2 (rDP2) inhibited cell growth and induced apoptosis of human bronchial epithelial cell BEAS-2B. Further investigation revealed that rDP2 increased intracellular reactive oxygen species, level of cytosolic cytochrome c and cleavage of caspase-9 and caspase-3. rDP2 also induced activation of p38 mitogen-activated protein kinase (P38) and c-Jun N-terminal kinase (JNK), and triggered proapoptotic signals including decrease of Bcl-2, increase of Bax and Bak, and upregulation of Fas and Fas ligand. In parallel, rDP2 inhibited glycogen synthase kinase 3beta and consequently enhanced degradation of cellular (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP). Involvement of toll-like receptor (TLR)2 in rDP2-induced apoptosis was also demonstrated using specific small inhibitory RNA.

Conclusions

Our findings indicate that rDP2 suppresses cell growth and trigger apoptosis of BEAS-2B cells, which may attribute to induction of both intrinsic and extrinsic pathway via TLR2 and P38/JNK signaling and c-FLIP degradation. It suggests that Der p 2 may aggravate respiratory disorders through enhancement of apoptosis and the consequent airway injury.
  相似文献   

20.
CD40 activation is necessary for thymus-dependent humoral immune responses and rescuing both phenotypically immature WEHI-231 B lymphoma cells from B cell antigen receptor-induced cell death and germinal center B cells from spontaneous apoptosis. As some effects of CD40 are probably mediated by differences in gene expression, cDNA expression arrays and RNase protection assays were used to identify the anti-apoptotic Bcl-2 homolog A1 as a CD40-inducible gene in B cell lines and purified germinal center B cells. Sustained CD40-induced A1 upregulation correlated with CD40-mediated rescue of WEHI-231 cells from anti-IgM-induced apoptosis. Moreover, overexpression of A1 specifically protected WEHI-231 cells from anti-IgM-induced apoptosis but not cell death triggered by certain other stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号