首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylogenetic relationships of oceanic dolphins (family Delphinidae) remain unclear. Several works using mitochondrial and/or nuclear DNA on different genera and species have been published, though no consensus exists regarding even the subfamilies that conform the family. Here, a new phylogeny for the family Delphinidae, including 36 different complete mitochondrial genomes (plus two outgroups), was constructed under Bayesian and maximum likelihood approaches. Results indicate identical tree topology in both cases, with almost all nodes fully supported independently of the reconstruction approach. This topology is different from those previously published and proposes new phylogenetic relationships among subfamilies, genera and species of the family. These findings are critically important for the study of oceanic dolphin taxonomy, ecology, evolution and conservation, and highlight the importance of revisiting and resolving uncertain phylogenies.  相似文献   

2.
3.
4.
Nucleotide sequences from mitochondrial (12S rRNA) and nuclear (growth hormone receptor) genes were used to investigate phylogenetic relationships among South American hystricognath rodents of the superfamily Octodontoidea, with special emphasis on the family Octodontidae. Relationships among most taxa were well resolved by a combined analysis of both genes, and the molecular phylogeny was used to address several long-standing phylogenetic problems. The family Abrocomidae was the most basal lineage within the superfamily Octodontoidea, sensu stricto, and the family Ctenomyidae was sister to the family Octodontidae, followed by a monophyletic group containing the families Myocastoridae and Echimyidae. A basic dichotomy was observed within the family Octodontidae. The Argentine desert specialists, Tympanoctomys and Octomys, grouped separate from Octodontomys, which was sister to a clade containing a monophyletic Octodon and a clade represented by species of Aconaemys and Spalacopus. Aconaemys was paraphyletic relative to Spalacopus. The phylogeny was used as an interpretive framework for an examination of variation in several non-molecular characters. The primitive diploid number for most of the octodontoids was determined to be between 46 and 56, and the primitive genome size 8.2 pg. Members of the Octodontidae appeared to be derived from an ancestral stock occupying lower elevations in scrub habitat. Furthermore, estimates of divergence time from the molecular data provided a temporal perspective for changes in plant communities, which demonstrated turnover and diversification in response to climatic and geologic events occurring in the Miocene through the Pleistocene.  相似文献   

5.
Ideally, organisms are grouped into monophyletic assemblages reflecting their evolutionary histories. Single (molecular) markers can reflect the evolutionary history of the marker, rather than the species in question, therefore, phylogenetic relationships should be inferred from adequate sampling of characters. Because the use of multiple loci greatly improves the resolving power of the molecular assay, we constructed a molecular phylogeny of the family Hexagrammidae based on six loci, including two mitochondrial and four nuclear loci. The resulting molecular phylogeny, from the combined data, was significantly different from the morphological topology suggested by Shinohara [Memoirs of the Faculty of Fisheries, Hokkaido University 41 (1994) 1]. Our data support a monophyletic assemblage for the genera Hexagrammos and Pleurogrammus. However, other taxa traditionally included in the family Hexagrammidae did not form a monophyletic assemblage. The monotypic genus Ophiodon was more closely associated with cottids than with other hexagrammids. Our data concur with the morphological topology in that the genera Zaniolepis and Oxylebius formed a monophyletic clade, which was distinct and basal to the remaining hexagrammids, seven cottids and one agonid.  相似文献   

6.
The avian family Cuculidae (cuckoos) is a diverse group of birds that vary considerably in behaviors of interest to behavioral ecologists, e.g., obligate brood parasitism and cooperative breeding. The taxonomy of this group has historically been relatively stable but has not been extensively evaluated using molecular methods. The goal of this study was to evaluate phylogenetic relationships within the ecologically diverse genus Coua and the placement of Coua among major cuckoo lineages. We sequenced 429 bp of cytochrome b (cyt b) and 522 bp of ND2, both mitochondrial genes, for 26 species of cuckoos spanning 13 genera. We also included the enigmatic hoatzin (Opisthocomus hoazin) and used two Tauraco species as outgroups. ND2 exhibited higher rates of DNA sequence and amino acid substitution than cyt b; however, this did not greatly affect the overall levels of phylogenetic resolution and support provided by these two genes. Combined analyses produced two alternative phylogenies, depending on weighting scheme, both of which were fully resolved and were characterized by high bootstrap support. These phylogenies recovered monophyly for all of the traditional cuckoo subfamilies and indicated, with strong support, that the hoatzin is outside of Cuculidae. Within Coua, an arboreal and a terrestrial clade were identified. In contrast, habitat choice of Coua species did not greatly reflect the phylogeny.  相似文献   

7.
J M Conlon 《Peptides》2001,22(7):1183-1193
The conformation of insulin in the crystalline state has been known for more than 30 years but there remains uncertainty regarding the biologically active conformation and the structural features that constitute the receptor-binding domain. The primary structure of insulin has been determined for at least 100 vertebrate species. In addition to the invariant cysteines, only ten amino acids (GlyA1, IleA2, ValA3, TyrA19, LeuB6, GlyB8, LeuB11, ValB12, GlyB23 and PheB24) have been fully conserved during vertebrate evolution. This observation supports the hypothesis derived from alanine-scanning mutagenesis studies that five of these invariant residues (IleA2, ValA3, TyrA19, GlyB23, and Phe24) interact directly with the receptor and five additional conserved residues (LeuB6, GlyB8, LeuB11, GluB13 and PheB25) are important in maintaining the receptor-binding conformation. With the exception of the hagfish, only conservative substitutions are found at B13 (Glu --> Asp) and B25(Phe --> Tyr). In contrast, amino acid residues that were also considered to be important in receptor binding based upon the crystal structure of insulin (GluA4, GlnA5, AsnA21, TyrB16, TyrB26) have been much less well conserved and are probably not components of the receptor-binding domain. The hypothesis that LeuA13 and LeuB17 form part of a second receptor-binding site in the insulin molecule finds some support in terms of their conservation during vertebrate evolution, although the site is probably absent in some hystricomorph insulins. In general, the amino acid sequences of insulins are not useful in cladistic analyses especially when evolutionary distant taxa are compared but, among related species in a particular order or family, the presence of unusual structural features in the insulin molecule may permit a meaningful phylogenetic inference. For example, analysis of insulin sequences supports monophyletic status for Dipnoi, Elasmobranchii, Holocephali and Petromyzontiformes.  相似文献   

8.
The structure of two preserved prenatal dolphins were visualized by 3D MR microscopy (isotropic nominal resolution up to 78.1 μm), which is a high-resolution 3D magnetic resonance imaging (MRI) technique. To determine the benefits and limitations of this method, the acquired 3D datasets were segmented manually and compared to histological sections of different specimens in corresponding developmental stages. The MR images visualize the external and internal morphology of both prenatal dolphins in detail. Various organ systems with their main components are clearly documented in the images, allowing a complete segmentation of the specimens and the calculation of volumes and surface areas of different organ systems. Due to its non-invasive character and the detailed imaging within its resolution range, MR microscopy proves to be a valuable tool in developmental biology for the visualization of the inner architecture of rare and delicate museum specimens, such as the small dolphin embryo and fetus examined. In these two prenatal dolphins, the profound structural modifications at the transition from the embryonic to the fetal stage reflect the adaptations of the mammalian bauplan to the requirements of a holaquatic cetacean life-style. However, the developmental pattern and sequence of the emerging tissues and organs in prenatal life do not resemble the hypothesized evolution of the structural and functional adaptations found in the fossil record.  相似文献   

9.
We analyse phylogeny, systematics and biogeography of slider turtles (Trachemys spp.) using sequence data of four mitochondrial genes (3242 bp) and five nuclear loci (3396 bp) of most South American and southern Central American taxa and representatives of northern Central American, West Indian and North American slider species (16 species and subspecies) and allied North American species (genera Chrysemys, Deirochelys, Graptemys, Malaclemys, Pseudemys). By applying maximum likelihood, relaxed molecular clock and ancestral range analyses, we provide evidence for two successive colonizations of South America by slider turtles. In addition, we show that the current species delineation of Central and South American slider turtles is incorrect. Our data suggest that Trachemys grayi is a distinct polytypic species that embraces, besides the nominotypical subspecies, T. g. emolli and T. g. panamensis. Trachemys ornata is also polytypic with the subspecies T. o. ornata, T. o. callirostris, T. o. cataspila, T. o. chichiriviche and T. o. venusta. Moreover, T. adiutrix should be regarded as a subspecies of T. dorbigni. All studied Trachemys species are inferred to have originated in the Late Miocene to Early Pliocene. The ancestor of the two subspecies of T. dorbigni colonized South America most probably prior to the establishment of the land bridge connecting Central and South America, whereas the two South American subspecies of T. ornata represent a younger independent immigration wave from Central America.  相似文献   

10.
The three extant potoroo species of the marsupial genus Potorous -Potorous tridactylus, P. longipes and P. gilbertii - are all of conservation concern due to introduced predators and habitat loss associated with the European settlement of Australia. Robust phylogenies can be useful to inform conservation management, but past phylogenetic studies on potoroos have been unable to fully resolve relationships within the genus. Here, a multi-locus approach was employed, using three mitochondrial DNA (mtDNA): NADH dehydrogenase subunit 2, cytochrome c oxidase subunit 1 and 12S rRNA and four nuclear DNA (nuDNA) gene regions: breast and ovarian cancer susceptibility gene, recombination activating gene-1, apolipoprotein B and omega globin. This was coupled with widespread geographic sampling of the broadly distributed P. tridactylus, to investigate the phylogenetic relationships within this genus. Analyses of the mtDNA identified five distinct and highly divergent lineages including, P. longipes, P. gilbertii and three distinct lineages within P. tridactylus (northern mainland, southern mainland and Tasmanian). P. tridactylus was paraphyletic with the P. gilbertii lineage, suggesting that cryptic taxa may exist within P. tridactylus. NuDNA sequences lacked the resolution of mtDNA. Although they resolved the three currently recognised species, they were unable to differentiate lineages within P. tridactylus. Current management of P. tridactylus as two sub-species (mainland and Tasmania) does not recognise the full scope of genetic diversity within this species, especially that of the mainland populations. Until data from more informative nuDNA markers are available, we recommend this species be managed as the following three subspecies: Potorous tridactylus tridactylus (southern Queensland and northern New South Wales); Potorous tridactylus trisulcatus (southern New South Wales and Victoria) Potorous tridactylus apicalis (Tasmania). Molecular dating estimated that divergences within Potorous occurred in the late Miocene through to the early Pliocene.  相似文献   

11.
In this paper on the ontogenesis and evolutionary biology of odontocete cetaceans (toothed whales), we investigate the head morphology of three perinatal pantropical spotted dolphins (Stenella attenuata) with the following methods: computer-assisted tomography, magnetic resonance imaging, conventional X-ray imaging, cryo-sectioning as well as gross dissection. Comparison of these anatomical methods reveals that for a complete structural analysis, a combination of modern imaging techniques and conventional morphological methods is needed. In addition to the perinatal dolphins, we include series of microslides of fetal odontocetes (S. attenuata, common dolphin Delphinus delphis, narwhal Monodon monoceros). In contrast to other mammals, newborn cetaceans represent an extremely precocial state of development correlated to the fact that they have to swim and surface immediately after birth. Accordingly, the morphology of the perinatal dolphin head is very similar to that of the adult. Comparison with early fetal stages of dolphins shows that the ontogenetic change from the general mammalian bauplan to cetacean organization was characterized by profound morphological transformations of the relevant organ systems and roughly seems to parallel the phylogenetic transition from terrestrial ancestors to modern odontocetes.  相似文献   

12.
The monophyly of the North and South American endemic subtribe Blapstinina (Tenebrionidae: Opatrini) is tested through phylogenetic analyses using five molecular markers [nuclear ribosomal 28S (28S), cytochrome oxidase subunit II (COII), arginine kinase (ArgK), carbamoyl-phosphate synthetase domain of rudimentary (CAD), wingless (wg)]. Representatives of several opatrinoid subtribes were taken into consideration, including other geographically overlapping endemic genera, namely Ammodonus, Ephalus and Pseudephalus (all previously considered representatives of Ammobiina). A comparative study of morphology was performed to assess resulting phylogenetic hypotheses. Analyses support the monophyly of Blapstinina; however, they also strongly indicate that Ammodonus should be included within the subtribe. Mecysmus is nested within Blapstinus and therefore, a new synonymy, Blapstinus (= Mecysmus syn.n. ), and the following combinations are introduced: Blapstinus advena comb.n. , B. angustus comb.r. , B. laticollis comb.n. , B. parvulus comb.n. , B. tenuis comb.n. Morphological analysis showed a close affiliation between Ephalus and Pseudephalus. Based on these results, Pseudephalus is synonymized with Ephalus [Ephalus (= Pseudephalus syn.n. )], and the following combination is introduced: Ephalus brevicornis comb.n. Recovered topologies also strongly support transferring Ephalus stat.n. into Opatrina, making the distribution of Opatrina amphi-Atlantic.  相似文献   

13.
The subfamily Viverrinae is a taxon of uncertain systematic status. This study consists of cladistic analyses based on morphological characters of specimens belonging to the genera Genetta , Osbornictis , Poiana and Prionodon . Two levels of analysis are carried out, one concerning generic relationships (intergeneric analysis) and one dealing with the interrelationships of species within the genus Genetta (intrageneric analysis). In the first analysis, different outgroups were used in order to test the ingroup topology.
With regard to the intergeneric analysis, Osbornictis , Poiana and Prionodon , together with Genetta johnstoni , constitute a monophyletic group (including Nandinia ), which is the sister-group of a clade formed by the other species of genets. Thus, the genus Genetta is regarded as paraphyletic. Prionodon appears to be a derived taxon. The Poiana – Prionodon clade is well supported, especially by ultrastructural hair characters. The cladogram topology in the intrageneric analysis indicates an ecological transition from the rain forest genets to the savanna genets. This supports a rain forest origin of the genus Genetta , a conclusion which may be generalized to the entire study group. © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 134 , 317–334.  相似文献   

14.
The systematics of oligochaete worms was discussed by experts for the entire 20th century. The development of computing and molecular techniques hold promise for the construction of a phylogenetically reasonable system. However, the eliminating of some paraphyletic lineages did not result in unanimous approval among a wide range of biologists (mainly morphologists and ecologists). Molecular systematics has helped clear up the position of many controversial species and genera, while causing doubts about the classification of higher rank taxa, which seemed to be logical and stable until recently.  相似文献   

15.

Background  

Dolphins of the genus Lagenorhynchus are anti-tropically distributed in temperate to cool waters. Phylogenetic analyses of cytochrome b sequences have suggested that the genus is polyphyletic; however, many relationships were poorly resolved. In this study, we present a combined-analysis phylogenetic hypothesis for Lagenorhynchus and members of the subfamily Lissodelphininae, which is derived from two nuclear and two mitochondrial data sets and the addition of 34 individuals representing 9 species. In addition, we characterize with parsimony and Bayesian analyses the phylogenetic utility and interaction of characters with statistical measures, including the utility of highly consistent (non-homoplasious) characters as a conservative measure of phylogenetic robustness. We also explore the effects of removing sources of character conflict on phylogenetic resolution.  相似文献   

16.
Abstract The South American tipulid taxa Elnoretta, Euvaldiviana and Valdiviana are revised. Type material of all described species was examined. Euvaldiviana is raised from subgeneric to generic rank. The synonymy of Valdiviana synempora and V. neuquenensis is established. Details of the genitalia of the five recognized species as well as external characters are illustrated. A phylogeny is presented of a monophyletic group containing Elnoretta, Euvaldiviana and Valdiviana together with the genera Acracantha (Australia) and Austrotipula (New Zealand).  相似文献   

17.
Candidatus Liberibacter’ species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from ‘Candidatus Liberibacter asiaticus’ (Las). In order to gain greater insight into ‘Ca. Liberibacter’ biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse ‘Ca. Liberibacter’ species, including those that can infect citrus. Our phylogenetic analysis differentiates ‘Ca. Liberibacter’ species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic ‘Ca. Liberibacter’ species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of ‘Ca. Liberibacter’ species, the introduction of Las in the United States and identifies promising Las targets for disease management.  相似文献   

18.
Neogastropoda, a highly diversified group of predatory marine snails, has often been contradicted in molecular phylogenetic studies. This is partly the consequence of limited neogastropod taxa or outgroups analyzed or insufficient gene sequences employed. This paper reports the most extensive molecular study of the group published to date with increased neogastropod taxa, multiple representatives of caenogastropod outgroups, and additional gene sequences. Data were collected from the entire 18S rRNA, histone H3, and three partial mitochondrial genes. Maximum parsimony, maximum likelihood and Bayesian analyses were conducted. In the caenogastropod phylogenetic framework, Hypsogastropoda was contradicted owing to the inclusion of Cerithioidea. Contrary to previous molecular studies, all the results recovered Neogastropoda as a monophyletic group, which confirms the monophyly of Neogastropoda and the validity of morphological synapomorphies that usually define Neogastropoda as monophyletic. Tonnoidea was shown to be paraphyletic with respect to Ficidae, and together this group formed a monophyletic clade as the sister group to Neogastropoda, which supported the “high mesogastropod” hypothesis of the origin of Neogastropoda. All neogastropod families were strongly supported except Buccinidae, Turridae and Cancellariidae. Our results shed light on the status of Neogastropoda, a controversial group, within Caenogastropoda.  相似文献   

19.
Jacob A. Cram 《Molecular ecology》2015,24(23):5767-5769
Marine microbes make up a key part of ocean food webs and drive ocean chemistry through a range of metabolic processes. A fundamental question in ecology is whether the diversity of organisms in a community shapes the ecological functions of that community. While there is substantial evidence to support a positive link between diversity and ecological productivity for macro‐organisms in terrestrial environments, this relationship has not previously been verified for marine microbial communities. One factor complicating the understanding of this relationship is that many marine microbes are dormant and are easily dispersed by ocean currents, making it difficult to ensure that the organisms found in a given environmental sample accurately reflect processes occurring in that environment. Another complication is that, due to microbes great range of genotypic and phenotypic variability, communities with distantly related species may have greater range of metabolic functions than communities have the same richness and evenness, but in which the species present are more closely related to each other. In this issue of Molecular Ecology, Galand et al. (2015) provide compelling evidence that the most metabolically active communities are those in which the nondormant portion of the microbial community has the highest phylogenetic diversity. They also illustrate that focusing on the active portion of the community allows for detection of temporal patterns in community structure that would not be otherwise evident. The authors’ point out that the presence of many dormant organisms that do not contribute to ecosystem functioning is a feature that makes microbial ecosystems fundamentally different from macro‐ecosystems and that this difference needs to be accounted for in microbial ecology theory.  相似文献   

20.
The phylogeny of salmonid fishes has been the focus of intensive study for many years, but some of the most important relationships within this group remain unclear. We used 269 Genbank sequences of mitochondrial DNA (from 16 genes) and nuclear DNA (from nine genes) to infer phylogenies for 30 species of salmonids. We used maximum parsimony and maximum likelihood to analyze each gene separately, the mtDNA data combined, the nuclear data combined, and all of the data together. The phylogeny with the best overall resolution and support from bootstrapping and Bayesian analyses was inferred from the combined nuclear DNA data set, for which the different genes reinforced and complemented one another to a considerable degree. Addition of the mitochondrial DNA degraded the phylogenetic signal, apparently as a result of saturation, hybridization, selection, or some combination of these processes. By the nuclear-DNA phylogeny: (1) (Hucho hucho, Brachymystax lenok) form the sister group to (Salmo, Salvelinus, Oncorhynchus, H. perryi); (2) Salmo is the sister-group to (Oncorhynchus, Salvelinus); (3) Salvelinus is the sister-group to Oncorhynchus; and (4) Oncorhynchus masou forms a monophyletic group with O. mykiss and O. clarki, with these three taxa constituting the sister-group to the five other Oncorhynchus species. Species-level relationships within Oncorhynchus and Salvelinus were well supported by bootstrap levels and Bayesian analyses. These findings have important implications for understanding the evolution of behavior, ecology and life-history in Salmonidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号