首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrin family not only mediates the recruitment of polymorphonuclear leukocytes (PMN) to sites of inflammation but also regulates several effector functions by binding to specific ligands. We have recently demonstrated that soluble fibrinogen (sFbg) is able to trigger an activating signal in PMN through an integrin-dependent mechanism. This activation results in degranulation, phagocytosis enhancement, and apoptosis delay. The aim of the present work was to further elucidate the molecular events that follow sFbg interaction with CD11b in human PMN, and the participation of this signaling pathway in the regulation of neutrophil functionality. We demonstrate that sFbg triggers a cascade of intracellular signals that lead to focal adhesion kinase and extracellular signal-regulated kinase 1/2 tyrosine phosphorylation. The activation of this mitogen-activated protein kinase pathway plays a central role in the sFbg modulation of secondary granule degranulation, Ab-dependent phagocytosis, and apoptosis. However, fibrinogen-induced secretory vesicle degranulation occurs independently of the signaling transduction pathways investigated herein. In the context of an inflammatory process, the intracellular signal pathway activated by sFbg may be an early event influencing the functionality of PMN.  相似文献   

2.
Here we identified an evolutionarily highly conserved and ubiquitously expressed protein (C9orf82) that shows structural similarities to the death effector domain of apoptosis-related proteins. RNAi knockdown of C9orf82 induced apoptosis in A-549 and MCF7/casp3-10b lung and breast carcinoma cells, respectively, but not in cells lacking caspase-3, caspase-10 or both. Apoptosis was associated with activated caspases-3, -8, -9 and -10, and inactivation of caspases 10 or 3 was sufficient to block apoptosis in this pathway. Apoptosis upon knockdown of C9orf82 was associated with increased caspase-10 expression and activation, which was required for the generation of an 11 kDa tBid fragment and activation of Caspase-9. These data suggest that C9orf82 functions as an anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. We designate this ubiquitously expressed and evolutionarily conserved anti-apoptotic protein Conserved Anti-Apoptotic Protein (CAAP). We also demonstrated that treatment of MCF7/casp3-10b cells with staurosporine and etoposides induced apoptosis and knockdown of CAAP expression. This implies that the CAAP protein could be a target for chemotherapeutic agents.  相似文献   

3.
We have recently shown that exposure of human keratinocytes to physiologic doses of ultraviolet B (UVB) activates epidermal growth factor receptor (EGFR)/extracellular-regulated kinases 1 and 2 (ERK1/2) and p38 signaling pathways via reactive oxygen species, an effect that can be modulated by antioxidants. Trolox, a water-soluble vitamin E analog, is among the antioxidants that are currently being investigated for their preventive and protective potential against harmful effects of UV radiation to the skin. We found that Trolox inhibits both basal and UVB-induced intracellular H(2)O(2) generation in primary keratinocytes in a concentration-dependent manner. Trolox did not significantly affect UVB-induced phosphorylation of EGFR. Stronger inhibition was observed for ERK1/2 activation at lower, and for p38 activation at higher, concentrations of Trolox added to cells before exposure to UVB. Similarly different effects were found with regard to length of pretreatment with Trolox before UVB exposure-increasing inhibition for ERK1/2 activation at shorter, and for p38 activation at longer, pretreatment intervals. UVB-induced c-jun-N-terminal kinase activation was potently suppressed by Trolox. Also, increasing the pretreatment time of Trolox decreased the rate of cell death following UVB. In conclusion, UVB-induced signaling pathway activation is differentially modulated by Trolox. Further investigation into the time-dependent biologic activation of Trolox and its metabolic products, and modulation of signal transduction with cell outcome should facilitate development of rational strategies for pharmacologic applications.  相似文献   

4.
The spreading epidemic of allergies and asthma has heightened interest in IgE, the central player in the allergic response. The activity of IgE is associated with a network of proteins; prominent among these are its two principal receptors, FcepsilonRI (high-affinity Fc receptor for IgE) and CD23, as well as galectin-3 and several co-receptors for CD23, notably CD21 and various integrins. Here, we review recent progress in uncovering the structures of these proteins and their complexes, and in our understanding of how IgE exerts its effects and how its expression is regulated. The information that has emerged suggests new therapeutic directions for combating allergic disease.  相似文献   

5.
Engagement of the IgE receptor (FcepsilonRI) on mast cells leads to the release of preformed and newly formed mediators as well as of cytokines. The signaling pathways responsible for these responses involve tyrosine phosphorylation of multiple proteins. We previously reported the phosphorylation on tyrosine of phospholipid scramblase 1 (PLSCR1) after FcepsilonRI aggregation. Here, PLSCR1 expression was knocked down in the RBL-2H3 mast cell line using short hairpin RNA. Knocking down PLSCR1 expression resulted in significantly impaired degranulation responses after FcepsilonRI aggregation and release of vascular endothelial growth factor, whereas release of MCP-1 was minimally affected. The release of neither leukotriene C4 nor prostaglandin D2 was altered by knocking down of PLSCR1. Analysis of FcepsilonRI-dependent signaling pathways revealed that whereas tyrosine phosphorylation of ERK and Akt was unaffected, tyrosine phosphorylation of LAT was significantly reduced in PLSCR1 knocked down cells. Tyrosine phosphorylation of phospholipase Cgamma1 and consequently the mobilization of calcium were also significantly reduced in these cells. In nonactivated mast cells, PLSCR1 was found in part in lipid rafts where it was further recruited after cell activation and was constitutively associated with Lyn and Syk but not with LAT or Fyn. Altogether, these data identify PLSCR1 as a novel amplifier of FcepsilonRI signaling that acts selectively on the Lyn-initiated LAT/phospholipase Cgamma1/calcium axis, resulting in potentiation of a selected set of mast cell responses.  相似文献   

6.
Resveratrol (3,4′,5-trihydroxystilbene) is a phytochemical believed to be partly responsible for the cardioprotective effects of red wine due to its numerous biological activities. Here, we studied biochemical pathways underlying peroxynitrite-mediated apoptosis in endothelial cells and potential mechanisms responsible for resveratrol cytoprotective action. Peroxynitrite triggered endothelial cell apoptosis through caspases-8, -9 and -3 activation implying both mitochondrial and death receptor apoptotic pathways. Resveratrol was able to prevent peroxynitrite-induced caspases-3 and -9 activation, but not caspase-8 activation. Additionally, peroxynitrite increased intracellular levels of Bax without affecting those of Bcl-2, increasing consequently the Bax/Bcl-2 ratio. This ratio decreased when cells where pre-incubated with 10 and 50 μM resveratrol, mainly due to resveratrol ability per se to increase Bcl-2 intracellular levels without affecting Bax intracellular levels. These results propose an additional mechanism whereby resveratrol may exert its cardioprotective effects and suggest a key role for Bcl-2 in the resveratrol anti-apoptotic action, especially in disrupting peroxynitrite-triggered mitochondrial pathway.  相似文献   

7.
Hypoxia is known to stimulate reactive oxygen species (ROS) generation. Because reduced glutathione (GSH) is compartmentalized in cytosol and mitochondria, we examined the specific role of mitochondrial GSH (mGSH) in the survival of hepatocytes during hypoxia (5% O2). 5% O2 stimulated ROS in HepG2 cells and cultured rat hepatocytes. Mitochondrial complex I and II inhibitors prevented this effect, whereas inhibition of nitric oxide synthesis with Nomega-nitro-L-arginine methyl ester hydrochloride or the peroxynitrite scavenger uric acid did not. Depletion of GSH stores in both cytosol and mitochondria enhanced the susceptibility of HepG2 cells or primary rat hepatocytes to 5% O2 exposure. However, this sensitization was abrogated by preventing mitochondrial ROS generation by complex I and II inhibition. Moreover, selective mGSH depletion by (R,S)-3-hydroxy-4-pentenoate that spared cytosol GSH levels sensitized rat hepatocytes to hypoxia because of enhanced ROS generation. GSH restoration by GSH ethyl ester or by blocking mitochondrial electron flow at complex I and II rescued (R,S)-3-hydroxy-4-pentenoate-treated hepatocytes to hypoxia-induced cell death. Thus, mGSH controls the survival of hepatocytes during hypoxia through the regulation of mitochondrial generation of oxidative stress.  相似文献   

8.
Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.  相似文献   

9.
10.

Background  

Neutrophils represent the first line of defence against aggressions. The programmed death of neutrophils is delayed by pro-inflammatory stimuli to ensure a proper resolution of the inflammation in time and place. The pro-inflammatory stimuli include granulocyte-macrophage colony-stimulating factor (GM-CSF). Recently, we have demonstrated that although neutrophils have an identical spontaneous apoptosis in elderly subjects compared to that in young subjects, the GM-CSF-induced delayed apoptosis is markedly diminished. The present study investigates whether an alteration of the GM-CSF stimulation of MAPKs play a role in the diminished rescue from apoptosis of PMN of elderly subjects.  相似文献   

11.
Fu YR  Yi ZJ  Yan YR  Qiu ZY 《Mitochondrion》2006,6(4):211-217
The camptothecin (CPT) derivative hydroxycamptothecin (HCPT) containing 10-hydroxy represents one of the most potent topoisomerase I inhibitors described. This anticancer agent, currently undergoing clinical trials on gastric tumours, has been shown more active and less toxic than conventional camptothecins. To shed light on the mechanism of action of HCPT at the cellular level, we examined cell growth, apoptosis, changes of mitochondrial membrane potential, cytochrome c and AIF translocation in cancer cells by exposing these cells to HCPT for indicated time. The effect of HCPT on cell proliferation was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) assay and apoptosis was measured using flow cytometry, fluorescence microscopy and electron microscopy. Changes of mitochondrial membrane potential were monitored by fluorescence microscope. Western blot analysis was used to evaluate the release of mitochondrial cytochrome c and AIF; On the other hand, translocation of cytochrome c and AIF from mitochondria to cytosol during apoptosis were confirmed by confocal microscopy. HCPT could noticeably inhibit the proliferation of SMMC-7721cells and the IC(50) dose was about 0.22muM; SMMC-7721 cells treated with HCPT showed typical characteristics of apoptosis rather than necrotic including phosphatidylserine (PS) exposed from the inner to the outer leaflet of the plasma membrane, abnormal cell morphology, chromatin condensation and nuclear fragmentation; On the other hand, during process of cell apoptosis, mitochondrial transmembrane potential was reduced; Compared with the control group, the mRNA and protein expression of cytochrome c and AIF in treated and untreated SMMC-7721 cells were not significantly changed (not shown). However, when cells were treated with HCPT, the massive translocation of cytochrome c and AIF to the nucleus was evident. Our results indicate that HCPT can inhibit proliferation and induce apoptosis of human hepatoma SMMC-7721 cells. Mitochondrial pathway of apoptosis, especially for cytochrome c and AIF translocation, may play an important role in apoptosis induced by HCPT.  相似文献   

12.
Statistical models were used to predict the effects of tryptone, glucose, yeast extract (TGY) and Mn on biomass formation of the highly radioresistant bacterium Deinococcus radiodurans. Results suggested that glucose had marginal effect on biomass buildup, but Mn was a significant factor for biomass formation. Mn also facilitated glucose interactions with other nutrient components. These predictions were verified by in vivo and in vitro experiments. TGY-grown cells metabolized glucose solely by the pentose phosphate pathway (PPP). Although only a fraction of glucose from the medium was transported into the cells, glucose was incorporated into the DNA efficiently after cells were exposed to UV light. The presence of glucose also enhanced the radioresistance of the culture. Mn could induce an Embden-Meyerhof-Parnas (EMP) pathway in D. radiodurans. The EMP pathway and the PPP of the Mn-treated cells oxidized glucose simultaneously at a 6:1 ratio. Although glucose was hydrolyzed rapidly by the Mn-treated cells, most glucose was released as CO(2). Mn-treated cultures retained less glucose per cell than cells grown without Mn, and still less glucose was incorporated into the DNA after cells were exposed to UV light. Mn-treated cells were also more sensitive to UV light. Results suggested that metabolites of glucose generated from the PPP enhanced the survival of D. radiodurans. Induction of the EMP pathway by Mn may deplete metabolites for DNA repair and may induce oxidative stress for the cell, leading to reduction of radioresistance.  相似文献   

13.
14.
The detrimental effects of estrogen on testicular function provide a conceptual basis to examine the speculative link between increased exposure to estrogens and spermatogenic cell death. Using an in vitro model, we provide an understanding of the events leading to estrogen-induced apoptosis in cells of spermatogenic lineage. Early events associated with estrogen exposure were up-regulation of FasL and increased generation of H(2)O(2), superoxide, and nitric oxide. The ability of anti-FasL antibodies to prevent several downstream biochemical changes and cell death induced by 17beta-estradiol substantiates the involvement of the cell death receptor pathway. Evidence for the amplification of the death-inducing signals through mitochondria was obtained from the transient mitochondrial hyperpolarization observed after estradiol exposure resulting in cytochrome c release. A combination of nitric oxide and superoxide but not H(2)O(2) was responsible for the mitochondrial hyperpolarization. Mn(III) tetrakis(4-benzoic acid)porphyrin chloride, an intracellular peroxynitrite scavenger, was able to reduce mitochondrial hyperpolarization and cell death. Although nitric oxide augmentation occurred through an increase in the expression of inducible nitric-oxide synthase, superoxide up-regulation was a product of estradiol metabolism. All of the above changes were mediated through an estrogen receptor-based mechanism because tamoxifen, the estrogen receptor modulator, was able to rescue the cells from estrogen-induced alterations. This study establishes the importance of the independent capability of cells of the spermatogenic lineage to respond to estrogens and most importantly suggests that low dose estrogens can potentially cause severe spermatogenic cellular dysfunction leading to impaired fertility even without interference of the hypothalamo-hypophyseal axis.  相似文献   

15.
The function of creatinekinase (CK) and its effect on phosphorus metabolites was studied inlivers of transgenic mice expressing human ubiquitous mitochondrial CK(CK-Mit) and rat brain CK (CK-B) isoenzymes and their combination.31P NMR spectroscopy and saturation transfer were recordedin livers of anesthetized mice to measure high-energy phosphates andhepatic CK activity. CK reaction velocity was related to total enzyme activity irrespective of the isoenzyme expressed, and it increased with increasing concentrations of creatine (Cr). The fluxesmediated by both isoenzymes in both directions (phosphocreatine or ATP synthesis) were equal. Over a 20-fold increase in CK-Mit activity (28-560 µmol · g wetwt1 · min1), the fraction ofphosphorylated Cr increased 1.6-fold. Hepatic free ADP concentrationscalculated by assuming equilibrium of the CK-catalyzed reaction in vivodecreased from 84 ± 9 to 38 ± 4 nmol/g wet wt. Calculatedfree ADP levels in mice expressing high levels of CK-B (920-1,635µmol · g wet wt1 · min1)were 52 ± 6 nmol/g wet wt. Mice expressing both isoenzymes had calculated free ADP levels of 36 ± 4 nmol/g wet wt. Thesefindings indicate that CK-Mit catalyzes its reaction equally well inboth directions and can lower hepatic apparent free ADP concentrations.

  相似文献   

16.

Background

Immunoglobulin (Ig) E is well-known to play a critical role in allergic diseases. We investigated the association between longitudinal change in total IgE level and the asthma control in patients with adult asthma.

Methods

For this retrospective study, 154 patients with asthma aged 21–82 years were recruited from the allergy and pulmonary units of the Showa University Hospital. Data on longitudinal changes in IgE over the preceding 10 years were collected and logarithmically transformed. Associations between longitudinal change in IgE and clinical characteristics including asthma control test (ACT) score, asthma control, pulmonary function test, and antigen specific IgE, were assessed.

Results

Patients with increased IgE tended to have significantly higher mean age, more episodes of acute exacerbation within a year, lower ACT scores, and used oral corticosteroids more frequently than those with decreased or unchanged IgE. The prevalence of uncontrolled asthma was higher in patients with increased IgE than in those with decreased or unchanged IgE. Mean %FEV1 and FEV1% were lower in patients with increased IgE than in those with decreased or unchanged IgE. Moreover, the prevalence of Aspergillus-specific IgE was higher in patients with increased IgE than in those with decreased or unchanged IgE.

Conclusions

These data suggest that a longitudinal increase in total IgE is associated with both poor asthma control and Aspergillus-specific IgE in patients with adult asthma.  相似文献   

17.

Background

Epidemiological evidence indicates that atopic asthma correlates with high serum IgE levels though the contribution of allergen specific IgE to the pathogenesis and the severity of the disease is still unclear.

Methods

We developed a microarray immunoassay containing 103 allergens to study the IgE reactivity profiles of 485 asthmatic and 342 non-asthmatic individuals belonging to families whose members have a documented history of asthma and atopy. We employed k-means clustering, to investigate whether a particular IgE reactivity profile correlated with asthma and other atopic conditions such as rhinitis, conjunctivitis and eczema.

Results

Both case-control and parent-to-siblings analyses demonstrated that while the presence of specific IgE against individual allergens correlated poorly with pathological conditions, particular reactivity profiles were significantly associated with asthma (p<10E-09). An artificial neural network (ANN)-based algorithm, calibrated with the profile reactivity data, correctly classified as asthmatic or non-asthmatic 78% of the individual examined. Multivariate statistical analysis demonstrated that the familiar relationships of the study population did not affect the observed correlations.

Conclusions

These findings indicate that asthma is a higher-order phenomenon related to patterns of IgE reactivity rather than to single antibody reactions. This notion sheds new light on the pathogenesis of the disease and can be readily employed to distinguish asthmatic and non-asthmatic individuals on the basis of their serum reactivity profile.  相似文献   

18.
Apoptotic death results from disrupting the balance between anti-apoptotic and pro-apoptotic cellular signals. The inter- and intracellular messenger nitric oxide is known to mediate either death or survival of neurones. In the present work, cerebellar granule cells were used as a model to assess the survival role of nitric oxide and to find novel signal transduction pathways related to this role. It is reported that sustained inhibition of nitric oxide production induces apoptosis in differentiated cerebellar granule neurones and that compounds that slowly release nitric oxide significantly revert this effect. Neuronal death was also reverted by a caspase-3-like inhibitor and by a cyclic GMP analogue, thus suggesting that nitric oxide-induced activation of guanylate cyclase is essential for the survival of these neurones. We also report that the Akt/GSK-3 kinase system is a transduction pathway related to the survival action of nitric oxide, as apoptosis caused by nitric oxide deprivation is accompanied by down-regulation of this, but not of other, kinase systems. Conversely, treatments able to rescue neurones from apoptosis also counteracted this down-regulation. Furthermore, in transfection experiments, overexpression of the Akt gene significantly decreased nitric oxide deprivation-related apoptosis. These results are the first evidence for a mechanism where endogenous nitric oxide promotes neuronal survival via Akt/GSK-3 pathway.  相似文献   

19.
20.
Wang  Xinghe  Muhammad  Ishfaq  Sun  Xiaoqi  Han  Meiyu  Hamid  Sattar  Zhang  Xiuying 《Molecular biology reports》2018,45(5):881-891

It is well documented that liver is the primary target organ of aflatoxin B1 (AFB1) and curcumin proved to be effective against AFB1-induced liver injury. In the present study, we investigated the preventive effects of curcumin against AFB1-induced apoptosis through the molecular regulation of p53, caspase-3, Bax, caspase-9, Bcl-2 and cytochrome-C associated with mitochondrial pathway. Liver antioxidant levels were measured. The hallmarks of apoptosis were analysed by methyl green-pyronin-Y staining, transmission electron microscopy, RT-PCR and western blot. Results revealed that dietary curcumin ameliorated AFB1-induced oxidative stress in a dose-dependent manner. Methyl green-pyronin-Y staining and transmission electron microscopy showed that AFB1 induced apoptosis and caused abnormal changes in liver cells morphology such as condensation of chromatin material, reduces cell volume and damaged mitochondria. Moreover, mRNA and protein expression results manifested that apoptosis associated genes showed up-regulation in AFB1 fed group. However, the supplementation of dietary curcumin (dose-dependently) alleviated the increased expression of the apoptosis associated genes at mRNA and protein level, and restored the hepatocytes normal morphology. The study provides an insight and a better understanding of the preventive mechanism of curcumin against AFB1-induced apoptosis in hepatocytes and provide scientific basis for the therapeutic uses of curcumin.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号