首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The peptidyl prolyl cis-trans isomerase Pin1 and the Inhibitor of Apoptosis Protein (IAP) Survivin are two major proteins involved in cancer. They both modulate apoptosis, mitosis, centrosome duplication and neuronal development but until now no functional relationship has been reported between these two proteins. We tested Pin1-induced regulation of Survivin in neuroblastoma cells. Pin1 overexpression in SY5Y neuroblastoma cells decreased Survivin levels. Immunocytochemical studies indicated that they partially co-localized in interphase and mitotic cells. Co-immunoprecipitation further demonstrates the existence of a Pin1/Survivin complex. Pin1-induced effect on Survivin was confirmed in COS cells. RT-PCR and mutagenesis experiments suggested that this Pin1-induced decrease of Survivin occurred at the protein level. Survivin downregulation depended on the binding ability of Pin1 but was not related to the single Thr-Pro site, suggesting an indirect relationship into a protein complex. Finally, this functional regulation of Survivin by Pin1 is reciprocal since Pin1 silencing led to an increase in Survivin levels. The characterization of this functional relationship between Pin1 and Survivin might help to better understand mitosis control and cancer mechanisms.  相似文献   

3.
Proteins containing phosphorylated Ser/Thr-Pro motifs play key roles in numerous regulatory processes in the cell. The peptidyl prolyl cis/trans isomerase Pin1 specifically catalyzes the conformational transition of phosphorylated Ser/Thr-Pro motifs. Here we report the direct analysis of the thermodynamic properties of the interaction of the PPIase Pin1 with its substrate-analogue inhibitor Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2 specifically targeted to the PPIase active site based on the combination of isothermal titration calorimetry and studies on inhibition of enzymatic activity of wt Pin1 and active site variants. Determination of the thermodynamic parameters revealed an enthalpically and entropically favored interaction characterized by binding enthalpy deltaH(ITC) of -6.3 +/- 0.1 kcal mol(-1) and a TdeltaS(ITC) of 4.1 +/- 0.1 kcal mol(-1). The resulting dissociation constant KD for binding of the peptidic inhibitor with 1.8 x 10(-8) M resembles the dissociation constant of a Pin1 substrate in the transition state, suggesting a transition state analogue conformation of the bound inhibitor. The strongly decreased affinity of Pin1 for ligand at increasing ionic strength implicates that the potential of bidentate binding of a substrate protein by the PPIase and the WW domain of Pin1 may be required to deploy improved efficiency and specificity of Pin1 under conditions of physiological ionic strength.  相似文献   

4.
Lippens G  Landrieu I  Smet C 《The FEBS journal》2007,274(20):5211-5222
Since its discovery 10 years ago, Pin1, a prolyl cis/trans isomerase essential for cell cycle progression, has been implicated in a large number of molecular processes related to human diseases, including cancer and Alzheimer's disease. Pin1 is made up of a WW interaction domain and a C-terminal catalytic subunit, and several high-resolution structures are available that have helped define its function. The enzymatic activity of Pin1 towards short peptides containing the pSer/Thr-Pro motif has been well documented, and we discuss the available evidence for the molecular mechanisms of its isomerase activity. We further focus on those studies that examine its cis/trans isomerase function using full-length protein substrates. The interpretation of this research has been further complicated by the observation that many of its pSer/Thr-Pro substrate motifs are located in natively unstructured regions of polypeptides, and are characterized by minor populations of the cis conformer. Finally, we review the data on the possibility of alternative modes of substrate binding and the complex role that Pin1 plays in the degradation of its substrates. After considering the available work, it seems that further analysis is required to determine whether binding or catalysis is the primary mechanism through which Pin1 affects cell cycle progression.  相似文献   

5.
Deregulation of Tau phosphorylation is a key question in Alzheimer disease pathogenesis. Recently, Pin1, a peptidylprolyl cis/trans-isomerase, was proposed to be a new modulator in Tau phosphorylation in Alzheimer disease. In vitro, Pin1 was reported to present a high affinity for both Thr(P)-231, a crucial site for microtubule binding, and Thr(P)-212. In fact, Pin1 may facilitate Thr(P)-231 dephosphorylation by protein phosphatase 2A through trans isomerization of the Thr(P)-Pro peptide bound. However, whether Pin1 binding to Tau leads to isomerization of a single site or of multiple Ser/Thr(P)-Pro sites in vivo is still unknown. In the present study, Pin1 involvement was investigated in stress-induced Tau dephosphorylation with protein phosphatase 2A activation. Both oxidative (H2O2) and heat stresses induced hypophosphorylation of a large set of phospho-Tau epitopes in primary cortical cultures. In both cases, juglone, a Pin1 pharmacological inhibitor, partially prevented dephosphorylation of Tau at Thr-231 among a set of phosphoepitopes tested. Moreover, Pin1 is physiologically found in neurons and partially co-localized with Tau. Furthermore, in Pin1-deficient neuronal primary cultures, H2O2 stress-induced Tau dephosphorylation at Thr(P)-231 was significantly lower than in wild type neurons. Finally, Pin1 transfection in Pin1-deficient neuronal cell cultures allowed for rescuing the effect of H2O2 stress-induced Tau dephosphorylation, whereas a Pin1 catalytic mutant did not. This is the first demonstration of an in situ Pin1 involvement in a differential Tau dephosphorylation on the full-length multiphosphorylated substrate.  相似文献   

6.
A homologue of the human site-specific prolyl cis/trans isomerase PIN1 was identified in Arabidopsis thaliana. The PIN1At gene encodes a protein of 119 amino acids that is 53% identical with the catalytic domain of the human PIN1 parvulin. Steady-state PIN1At mRNA is found in all plant tissues tested. We show by two-dimensional NMR spectroscopy that the PIN1At is a prolyl cis/trans isomerase with specificity for phosphoserine-proline bonds. PIN1At is the first example of an eukaryotic parvulin without N- or C-terminal extensions. The N-terminal WW domain of 40 amino acids, typical of all the phosphorylation-dependent eukaryotic parvulins, is absent. However, triple-resonance NMR experiments showed that PIN1At contained a hydrophobic helix similar to the alpha1 helix observed in PIN1 that could mediate the protein-protein interactions.  相似文献   

7.
A new method for peptidyl prolyl cis/trans isomerization prediction based on the theory of support vector machines (SVM) was introduced. The SVM represents a new approach to supervised pattern classification and has been successfully applied to a wide range of pattern recognition problems. In this study, six training datasets consisting of different length local sequence respectively were used. The polynomial kernel functions with different parameter d were chosen. The test for the independent testing dataset and the jackknife test were both carried out. When the local sequence length was 20-residue and the parameter d = 8, the SVM method archived the best performance with the correct rate for the cis and trans forms reaching 70.4 and 69.7% for the independent testing dataset, 76.7 and 76.6% for the jackknife test, respectively. Matthew's correlation coefficients for the jackknife test could reach about 0.5. The results obtained through this study indicated that the SVM method would become a powerful tool for predicting peptidyl prolyl cis/trans isomerization.  相似文献   

8.
The hPar14 protein is a peptidyl prolyl cis/trans isomerase and is a human parvulin homologue. The hPar14 protein shows about 30 % sequence identity with the other human parvulin homologue, hPin1. Here, the solution structure of hPar14 was determined by nuclear magnetic resonance spectroscopy. The N-terminal 35 residues preceding the peptidyl prolyl isomerase domain of hPar14 are unstructured, whereas hPin1 possesses the WW domain at its N terminus. The fold of residues 36-131 of hPar14, which comprises a four-stranded beta-sheet and three alpha-helices, is superimposable onto that of the peptidyl prolyl isomerase domain of hPin1. To investigate the interaction of hPar14 with a substrate, the backbone chemical-shift changes of hPar14 were monitored during titration with a tetra peptide. Met90, Val91, and Phe94 around the N terminus of alpha3 showed large chemical-shift changes. These residues form a hydrophobic patch on the molecular surface of hPar14. Two of these residues are conserved and have been shown to interact with the proline residue of the substrate in hPin1. On the other hand, hPar14 lacks the hPin1 positively charged residues (Lys63, Arg68, and Arg69), which determine the substrate specificity of hPin1 by interacting with phosphorylated Ser or Thr preceding the substrate Pro, and exhibits a different structure in the corresponding region. Therefore, the mechanism determining the substrate specificity seems to be different between hPar14 and hPin1.  相似文献   

9.
Apoptosis contributes to the pathology of gastric epithelial cell damage that characterizes Helicobacter pylori infection. The secreted peptidyl prolyl cis, trans-isomerase of H. pylori, HP0175 executed apoptosis of the gastric epithelial cell line AGS in a dose- and time-dependent manner. The effect of HP0175 was confirmed by generating an isogenic mutant of H. pylori disrupted in the HP0175 gene. The apoptosis-inducing ability of this mutant was impaired compared with that of the wild type. The effect of HP0175 was mediated through TLR4. Preincubation of the gastric epithelial cell line AGS with anti-TLR4 mAb inhibited apoptosis induced by HP0175. Downstream of TLR4, apoptosis signal-regulating kinase 1 activated MAPK p38, leading to the caspase 8-dependent cleavage of Bid, its translocation to the mitochondria, mitochondrial pore formation, cytochrome c release, and activation of caspases 9 and 3. We show for the first time that a secreted bacterial Ag with peptidyl prolyl cis,trans-isomerase activity signals through TLR4, and that this Ag executes gastric epithelial cell apoptosis through a signaling pathway in which TLR4 and apoptosis signal-regulating kinase 1 are central players.  相似文献   

10.
Fanghänel J  Akiyama H  Uchida C  Uchida T 《FEBS letters》2006,580(13):3237-3245
We investigated the enzyme activity of peptidyl prolyl cis/trans isomerases (PPIases) in brain, testis, lung, liver, and mouse embryonic fibroblasts (MEF) of Pin1+/+ and Pin1-/- mice. The aim of this study is to determine if other PPIases can substitute for the loss of Pin1 activity in Pin1-/- mice and what influence Pin1 depletion has on the activities of other PPIases members. The results show that high PPIase activities of Pin1 are found in organs that have the tendency to develop Pin1 knockout phenotypes and, therefore, provide for the first time an enzymological basis for these observations. Furthermore we determined the specific activity (k(cat)/K(M)) of endogenous Pin1 and found that it is strongly reduced as compared with the recombinant protein in all investigated organs. These results suggest that posttranslational modifications may influence the PPIase activity in vivo. The activities originating from cyclophilin and FKBP are not influenced by the Pin1 knockout, but a basal enzymatic activity towards phosphorylated substrates could be found in Pin1-/- lysates. Real time PCR experiments of all PPIases in different mouse organs and MEF of Pin1+/+ and Pin1-/- mice support the finding and reveal the specific expression profiles of PPIases in mice.  相似文献   

11.
Liu W  Youn HD  Zhou XZ  Lu KP  Liu JO 《FEBS letters》2001,496(2-3):105-108
Nuclear factor of activated T cells (NFAT) plays a key role in T cell activation. The activation of NFAT involves calcium- and calcineurin-dependent dephosphorylation and nuclear translocation from the cytoplasm, a process that is opposed by protein kinases. We show here that the peptidyl prolyl cis-trans isomerase Pin1 interacts specifically with the phosphorylated form of NFAT. The NFAT-Pin1 interaction is mediated through the WW domain of Pin1 and the serine-proline-rich domains of NFAT. Furthermore, binding of Pin1 to NFAT inhibits the calcineurin-mediated dephosphorylation of NFAT in vitro, and overexpression of Pin1 in T cells inhibits calcium-dependent activation of NFAT in vivo. These results suggest a possible role for Pin1 in the regulation of NFAT in T cells.  相似文献   

12.
APOBEC3G (A3G) is a cytidine deaminase that restricts human immunodeficiency virus type 1 (HIV-1) replication. HIV-1 synthesizes a viral infectivity factor (Vif) to counter A3G restriction. Currently, it is poorly understood how A3G expression/activity is regulated by cellular factors. Here, we show that the prolyl isomerase Pin1 protein modulates A3G expression. Pin1 was found to be an A3G-interacting protein that reduces A3G expression and its incorporation into HIV-1 virion, thereby limiting A3G-mediated restriction of HIV-1. Intriguingly, HIV-1 infection modulates the phosphorylation state of Pin1, enhancing its ability to moderate A3G activity. These new findings suggest a potential Vif-independent way for HIV-1 to moderate the cellular action of A3G.  相似文献   

13.
14.
15.
The WW module of the peptidyl-prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho-Thr(Ser)-Pro motifs. When the microtubule-associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212-Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.  相似文献   

16.
Large peptidyl-prolyl cis/trans isomerases (PPIases) are important components of the Hsp90 chaperone complex. In mammalian cells, either Cyp40, FKBP51 or FKBP52 is incorporated into these complexes. It has been suggested that members of this protein family exhibit both prolyl isomerase and chaperone activity. Here we define the structural and functional properties of the three mammalian large PPIases. We find that in all cases two PPIase monomers bind to an Hsp90 dimer. However, the affinities of the PPIases are different with FKBP52 exhibiting the strongest interaction and Cyp40 the weakest. Furthermore, in the mammalian system, in contrast to the yeast system, the catalytic activity of prolyl isomerization corresponds well to that of the respective small PPIases. Interestingly, Cyp40 and FKBP51 are the more potent chaperones. Thus, it seems that both the affinity for Hsp90 and the differences in their chaperone properties, which may reflect their interaction with the non-native protein in the Hsp90 complex, are critical for the selective incorporation of a specific large PPIase.  相似文献   

17.
18.
19.

Background

Cyclophilin A (CypA) represents a potential target for antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication, although the mechanism through which CypA modulates HIV-1 infectivity still remains unclear. The interaction of HIV-1 viral protein R (Vpr) with the human peptidyl prolyl isomerase CypA is known to occur in vitro and in vivo. However, the nature of the interaction of CypA with Pro-35 of N-terminal Vpr has remained undefined.

Results

Characterization of the interactions of human CypA with N-terminal peptides of HIV-1 Vpr has been achieved using a combination of nuclear magnetic resonace (NMR) exchange spectroscopy and surface plasmon resonance spectroscopy (SPR). NMR data at atomic resolution indicate prolyl cis/trans isomerisation of the highly conserved proline residues Pro-5, -10, -14 and -35 of Vpr are catalyzed by human CypA and require only very low concentrations of the isomerase relative to that of the peptide substrates. Of the N-terminal peptides of Vpr only those containing Pro-35 bind to CypA in a biosensor assay. SPR studies of specific N-terminal peptides with decreasing numbers of residues revealed that a seven-residue motif centred at Pro-35 consisting of RHFPRIW, which under membrane-like solution conditions comprises the loop region connecting helix 1 and 2 of Vpr and the two terminal residues of helix 1, is sufficient to maintain strong specific binding.

Conclusions

Only N-terminal peptides of Vpr containing Pro-35, which appears to be vital for manifold functions of Vpr, bind to CypA in a biosensor assay. This indicates that Pro-35 is essential for a specific CypA-Vpr binding interaction, in contrast to the general prolyl cis/trans isomerisation observed for all proline residues of Vpr, which only involve transient enzyme-substrate interactions. Previously suggested models depicting CypA as a chaperone that plays a role in HIV-1 virulence are now supported by our data. In detail the SPR data of this interaction were compatible with a two-state binding interaction model that involves a conformational change during binding. This is in accord with the structural changes observed by NMR suggesting CypA catalyzes the prolyl cis/trans interconversion during binding to the RHFP35RIW motif of N-terminal Vpr.  相似文献   

20.
The 131-amino acid residue parvulin-like human peptidyl-prolyl cis/trans isomerase (PPIase) hPar14 was shown to exhibit sequence similarity to the regulator enzyme for cell cycle transitions human hPin1, but specificity for catalyzing pSer(Thr)-Pro cis/trans isomerizations was lacking. To determine the solution structure of hPar14 the (1)H, (13)C, and (15)N chemical shifts of this protein have been assigned using heteronuclear two and three-dimensional NMR experiments on unlabeled and uniformly (15)N/(13)C-labeled recombinant protein isolated from Escherichia coli cells that overexpress the protein. The chemical shift assignments were used to interpret the NOE data, which resulted in a total of 1042 NOE restraints. The NOE restraints were used along with 71 dihedral angle restraints and 38 hydrogen bonding restraints to produce 50 low-energy structures. The hPar14 folds into a betaalpha(3)betaalphabeta(2) structure, and contains an unstructured 35-amino acid basic tail N-terminal to the catalytic core that replaces the WW domain of hPin1 homologs. The three-dimensional structures of hPar14 and the PPIase domain of human hPin1 reveal a high degree of conservation. The root-mean-square deviations of the mean atomic coordinates of the heavy atoms of the backbone between residues 38 to 45, 50 to 58, 64 to 70, 81 to 86, 115 to 119 and 122 to 128 of hPar14 were 0.81(+/-0.07) A. The hPar14 model structure provides insight into how this class of PPIases may select preferential secondary catalytic sites, and also allows identification of a putative DNA-binding motif in parvulin-like PPIases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号