首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of adenylyl cyclase in the hippocampus is critical for memory formation. However, generation of cAMP signals within an optimal range for memory may require a balance between stimulatory and inhibitory mechanisms. The role of adenylyl cyclase inhibitory mechanisms for memory has not been addressed. One of the mechanisms for inhibition of adenylyl cyclase is through activation of G(i)-coupled receptors, a mechanism that could serve as a constraint on memory formation. Here we report that ablation of G(ialpha1) by gene disruption increases hippocampal adenylyl cyclase activity and enhances LTP in area CA1. Furthermore, gene ablation of G(ialpha1) or antisense oligonucleotide-mediated depletion of G(ialpha1) disrupted hippocampus-dependent memory. We conclude that G(ialpha1) provides a critical mechanism for tonic inhibition of adenylyl cyclase activity in the hippocampus. We hypothesize that loss of G(ialpha1) amplifies the responsiveness of CA1 postsynaptic neurons to stimuli that strengthen synaptic efficacy, thereby diminishing synapse-specific plasticity required for new memory formation.  相似文献   

2.
Gs and Gi, respectively, activate and inhibit the enzyme adenylyl cyclase. Regulation of adenylyl cyclase by the heterotrimeric Gs and Gi proteins requires the dissociation of GDP and binding of GTP to the alpha s or alpha i subunit. The beta gamma subunit complex of Gs and Gi functions, in part, to inhibit GDP dissociation and alpha subunit activation by GTP. Multiple beta and gamma polypeptides are expressed in different cell types, but the functional significance for this heterogeneity is unclear. The beta gamma complex from retinal rod outer segments (beta gamma t) has been shown to discriminate between alpha i and alpha s subunits (Helman et al: Eur J Biochem 169:431-439, 1987). beta gamma t efficiently interacts with alpha i-like G protein subunits, but poorly recognizes the alpha s subunit. beta gamma t was, therefore, used to define regions of the alpha i subunit polypeptide that conferred selective regulation compared to the alpha s polypeptide. A series of alpha subunit chimeras having NH2-terminal alpha i and COOH-terminal alpha s sequences were characterized for their regulation by beta gamma t, measured by the kinetics of GTP gamma S activation of adenylyl cyclase. A 122 amino acid NH2-terminal region of the alpha i polypeptide encoded within an alpha i/alpha s chimera was sufficient for beta gamma t to discriminate the chimera from alpha s. A shorter 54 amino acid alpha i sequence substituted for the corresponding NH2-terminal region of alpha s was insufficient to support the alpha i-like interaction with beta gamma t. The findings are consistent with our previous observation (Osawa et al: Cell 63:697-706, 1990) that a region in the NH2-terminal moiety functions as an attenuator domain controlling GDP dissociation and GTP activation of the alpha subunit polypeptide and that the attenuator domain is involved in functional recognition and regulation by beta gamma complexes.  相似文献   

3.
Beta-Adrenoceptor agonists activate a time- and voltage-independent Cl- conductance in mammalian cardiac myocytes. To characterize the cellular signaling pathways underlying its regulation, wide-tipped pipettes fitted with a pipette perfusion device were used to record whole-cell current and to introduce nucleotides to the interior of guinea pig ventricular myocytes. Replacement of pipette GTP with GDP beta S prevented activation of the Cl- conductance by Iso, suggesting a requirement for G protein turnover. With GTP in the pipette, the effect of Iso could be abolished by the beta-adrenoceptor antagonist propranolol, and mimicked by histamine or forskolin. These actions of Iso and forskolin are mediated exclusively via cAMP-dependent protein kinase (PKA), because (a) maximal activation of the Cl- conductance by forskolin or pipette cAMP occluded the effect of Iso, and (b) switching to pipette solution containing a synthetic peptide inhibitor (PKI) of PKA completely abolished the Cl- conductance activated by Iso and prevented the action of forskolin, but had no further effect. These results argue against basal activation of the Cl- conductance, and make it extremely unlikely that the stimulatory G protein, Gs, has any direct, phosphorylation-independent influence. The muscarinic receptor agonists acetylcholine (ACh) and carbachol diminished, in a reversible manner, Cl- conductance activated by Iso or forskolin, but not that elicited by cAMP. The muscarinic inhibition was abolished by replacing pipette GTP with GDP beta S, or by preincubating cells with pertussis toxin (PTX), and was therefore mediated by an inhibitory G protein, presumably Gi, influencing adenylyl cyclase activity. Nonhydrolyzable GTP analogues (GTP gamma S or GppNHp) applied via the pipette did not themselves activate Cl- conductance, but rendered Cl- current activation by brief exposures to Iso or histamine, but not to forskolin, irreversible. The Cl- conductance persistently activated by Iso was insensitive to propranolol or ACh, but could still be abolished by pipette application of PKI. The data indicate that stimulation of beta-adrenergic or histaminergic receptors in the presence of nonhydrolyzable GTP analogues causes persistent activation of Gs and uncouples it from the receptors. We conclude that autonomic regulation of cardiac Cl- conductance reflects accurately the underlying modulation of adenylyl cyclase activity and, hence, that this system is a suitable mammalian model for in situ studies of the interactions between adenylyl cyclase, Gs, Gi, and forskolin.  相似文献   

4.
Onali P  Olianas MC 《Life sciences》1995,56(11-12):973-980
In membranes of rat olfactory bulb, muscarinic receptor agonists stimulate basal adenylyl cyclase activity . This response is inhibited by a number of muscarinic receptor antagonists with a rank order of potency suggesting the involvement of the M4 muscarinic receptor subtype. The stimulatory effect does not require Ca2+ and occurs independently of activation of phosphoinositide hydrolysis. Pretreatment with pertussis toxin completely prevents the muscarinic stimulation of adenylyl cyclase, indicating the participation of G proteins of the Gi/Go family. Immunological impairment of the G protein, Gs, also reduces the muscarinic response, whereas concomitant activation of Gs-coupled receptors by CRH or VIP results in a synergistic stimulation of adenylyl cyclase activity. Although these data suggest a role for Gs, a body of evidence indicates that the muscarinic receptors do not interact directly with this G protein. Moreover, the Ca2+/calmodulin (Ca2+/CaM)- and forskolin-stimulated enzyme activities are inhibited by muscarinic receptor activation in a pertussis toxin-sensitive manner and with a pharmacological profile similar to that observed for the stimulatory response. These data indicate that in rat olfactory bulb M4 muscarinic receptors exert a bimodal control on cyclic AMP formation through a sequence of events that may involve activation of Gi/Go proteins, synergistic interaction with Gs and differential modulation of Ca2+/CaM-independent and -dependent forms of adenylyl cyclase.  相似文献   

5.
The plasma-membrane ATPase of Saccharomyces cerevisiae is a proton pump whose activity, essential fro proliferation, is subject to regulation by nutritional signals. The previous finding that the CDC25 gene product is required for the glucose-induced H+-ATPase activation suggested that H+-ATPase activity is regulated by cAMP. Analysis of starvation-induced inactivation and glucose-induced activation of the H+-ATPase in mutants affected in activity of the RAS proteins, adenylyl cyclase or cAMP-dependent protein kinase showed that nutritional regulation of H+-ATPase activity does not depend directly on any of these factors. We conclude that adenlyl cyclase does not mediate all nutritional responses. This also indicates that the specific CDC25 requirement for the glucose-induced activation of the H+-ATPase identifies a new function for the CDC25 gene product, a function that appears to be independent of CDC25-mediated modulation of the RAS/adenylyl cyclase/cAMP pathway.  相似文献   

6.
The ability of a cell to detect an external chemical signal and initiate a program of directed migration along a gradient comprises the fundamental process called chemotaxis. Investigations in Dictyostelium discoideum and neutrophils have established that pleckstrin homology (PH) domain-containing proteins that bind to the PI3K products PI(3,4)P2 and PI(3,4,5)P3, such as CRAC (cytosolic regulator of adenylyl cyclase) and Akt/PKB, translocate specifically to the leading edge of chemotaxing cells. CRAC is essential for the chemoattractant-mediated activation of the adenylyl cyclase ACA, which converts ATP into cAMP, the primary chemoattractant for D. discoideum. The mechanisms by which CRAC activates ACA remain to be determined. We now show that in addition to its essential role in the activation of ACA, CRAC is involved in regulating chemotaxis. Through mutagenesis, we show that these two functions are independently regulated downstream of PI3K. A CRAC mutant that has lost the capacity to bind PI3K products does not support chemotaxis and shows minimal ACA activation. Finally, overexpression of CRAC and various CRAC mutants show strong effects on ACA activation with little effect on chemotaxis. These findings establish that chemoattractant-mediated activation of PI3K is important for the CRAC-dependent regulation of both chemotaxis and adenylyl cyclase activation.  相似文献   

7.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

8.
The crystal structure of soluble functional fragments of adenylyl cyclase complexed with G alpha(s) and forskolin, shows three regions of G alpha(s) in direct contact with adenylyl cyclase. The functions of these three regions are not known. We tested synthetic peptides encoding these regions of G alpha(s) on the activities of full-length adenylyl cyclases 2 and 6. A peptide encoding the Switch II region (amino acids 222-247) stimulated both adenylyl cyclases 2- to 3-fold. Forskolin synergized the stimulation. Addition of peptides in the presence of activated G alpha(s) partially inhibited G alpha(s) stimulation. Corresponding Switch II region peptides from G alpha(q) and G alpha(i) did not stimulate adenylyl cyclase. A peptide encoding the Switch I region (amino acids 199-216) also stimulated AC2 and AC6. The stimulatory effects of the two peptides at saturating concentrations were non-additive. A peptide encoding the third contact region (amino acids 268-286) located in the alpha 3-beta 5 region, inhibits basal, forskolin, and G alpha(s)-stimulated enzymatic activities. Since this region in G alpha(s) interacts with both the central cytoplasmic loop and C-terminal tail of adenylyl cyclases this peptide may be involved in blocking interactions between these two domains. These functional data in conjunction with the available structural information suggest that G alpha(s) activation of adenylyl cyclase is a complex event where the alpha 3-beta 5 loop of G alpha(s) may bring together the central cytoplasmic loop and C-terminal tail of adenylyl cyclase thus allowing the Switch I and Switch II regions to function as signal transfer regions to activate adenylyl cyclase.  相似文献   

9.
10.
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-alpha receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-alpha in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or G(i) proteins. TNF-alpha caused a significant dose- (1-10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-alpha also increased phosphorylation of Ser(338) on raf-1 kinase, indicative of activation. IL-1beta and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-alpha transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase.  相似文献   

11.
Natriuretic peptide receptor-C signaling and regulation   总被引:10,自引:0,他引:10  
Anand-Srivastava MB 《Peptides》2005,26(6):1044-1059
The natriuretic peptides (NP) are a family of three polypeptide hormones termed atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). ANP regulates a variety of physiological parameters by interacting with its receptors present on the plasma membrane. These are of three subtypes NPR-A, NPR-B, and NPR-C. NPR-A and NPR-B are guanylyl cyclase receptors, whereas NPR-C is non-guanylyl cyclase receptor and is coupled to adenylyl cyclase inhibition or phospholipase C activation through inhibitory guanine nucleotide regulatory protein (Gi). ANP, BNP, CNP, as well as C-ANP(4-23), a ring deleted peptide that specifically interacts with NPR-C receptor inhibit adenylyl cyclase activity through Gi protein. Unlike other G-protein-coupled receptors, NPR-C receptors have a single transmembrane domain and a short cytoplasmic domain of 37 amino acids, which has a structural specificity like those of other single transmembrane domain receptors. A 37 amino acid cytoplasmic peptide is sufficient to inhibit adenylyl cyclase activity with an apparent Ki similar to that of ANP(99-126) or C-ANP(4-23). In addition, C-ANP(4-23) also stimulates phosphatidyl inositol (PI) turnover in vascular smooth muscle cells (VSMC) which is attenuated by dbcAMP and cAMP-stimulatory agonists, suggesting that NPR-C receptor-mediated inhibition of adenylyl cyclase and resultant decreased levels of cAMP may be responsible for NPR-C-mediated stimulation of PI turnover. Furthermore, the activation of NPR-C receptor by C-ANP(4-23) and CNP inhibits the mitogen-activated protein kinase activity stimulated by endothelin-3, platelet-derived growth factor, phorbol-12 myristate 13-acetate, suggesting that NPR-C receptor might also be coupled to other signal transduction system or that there may be an interaction of the NPR-C receptor and some other signaling pathways. In this review article, NPR-C receptor coupling to different signaling pathways and their regulation will be discussed.  相似文献   

12.
Interactions between adhesion molecules, agglutinins, on the surfaces of the flagella of mt+ and mt- gametes in Chlamydomonas rapidly generate a sexual signal, mediated by cAMP, that prepares the cells for fusion to form a zygote. The mechanism that couples agglutinin interactions to increased cellular levels of cAMP is unknown. In previous studies on the adenylyl cyclase in flagella of a single mating type (i.e., non-adhering flagella) we presented evidence that the gametic form of the enzyme, but not the vegetative form, was regulated by phosphorylation and dephosphorylation (Zhang, Y., E. M. Ross, and W. J. Snell. 1991. J. Biol. Chem. 266:22954-22959; Zhang, Y., and W. J. Snell. 1993. J. Biol. Chem. 268:1786-1791). In the present report we describe studies on regulation of flagellar adenylyl cyclase during adhesion in a cell-free system. The results show that the activity of gametic flagellar adenylyl cyclase is regulated by adhesion in vitro between flagella isolated from mt+ and mt- gametes. After mixing mt+ and mt- flagella together for 15 s in vitro, adenylyl cyclase activity was increased two- to threefold compared to that of the non-mixed (non- adhering), control flagella. This indicates that the regulation of gametic flagellar adenylyl cyclase during the early steps of fertilization is not mediated by signals from the cell body, but is a direct and primary response to interactions between mt+ and mt- agglutinins. By use of this in vitro assay, we discovered that 50 nM staurosporine (a protein kinase inhibitor) blocked adhesion-induced activation of adenylyl cyclase in vitro, while it had no effect on adenylyl cyclase activity of non-adhering gametic flagella. This same low concentration of staurosporine also inhibited adhesion-induced increases in vivo in cellular cAMP and blocked subsequent cellular responses to adhesion. Taken together, our results indicate that flagellar adenylyl cyclase in Chlamydomonas gametes is coupled to interactions between mt+ and mt- agglutinins by a staurosporine- sensitive activity, probably a protein kinase.  相似文献   

13.
Kriebel PW  Parent CA 《IUBMB life》2004,56(9):541-546
Cyclic AMP metabolism is essential for the survival of the social amoebae Dictyostelium discoideum. Three distinct adenylyl cyclases are expressed and required for the normal development of this simple eukaryote. The adenylyl cyclase expressed during aggregation, ACA, is related to the mammalian and Drosophila G protein-coupled enzymes and is responsible for the synthesis of cAMP that is required for cell-cell signaling in early development. ACB harbors histidine kinase and response-regulator domains and is required for terminal differentiation. Finally, the adenylyl cyclase expressed during germination, ACG, acts as an osmosensor and is involved in controlling spore germination. Together, these enzymes generate the various levels of cAMP that are required for D. discoideum to transition from uni- to multi-cellularity. This review will highlight the properties of these enzymes and describe the signaling cascades that lead to their activation.  相似文献   

14.
In intact membranes as well as after reconstitution into phospholipid vesicles, pertussis toxin (PT)-mediated ADP-ribosylation of G proteins causes loss of receptor-mediated regulation of effectors and/or G protein-mediated regulation of receptor binding. Studies were carried out to test which of several discrete steps known to constitute the basal and receptor-stimulated regulatory cycles of Gi proteins are affected by PT. Experiments with the Gs-deficient Gi-regulated adenylyl cyclase of cyc- S49 cell membranes indicated that PT blocks Gi activation by GTP without affecting GDP dissociation or GTP binding to a major extent. This suggested that the block lies in the transition of inactive GTP-Gi to active GTP-Gi (G to G* transition). Experiments with purified Gi in solution and after incorporation into phospholipid vesicles showed that PT does not increase or decrease the intrinsic GTPase activity of Gi. Experiments in which Gi was incorporated into phospholipid vesicles with rhodopsin, a receptor that interacts with Gi to stimulate the rate of guanosine 5'-O-(3-thio)triphosphate binding and GTP hydrolysis, indicated that PT does not affect the basal GTPase activity of Gi, but blocks its activation by the photoreceptor. Taken together the results indicate that PT-mediated ADP ribosylation has two separate effects, one to block the interaction of receptor with Gi and another to impede the GTP-induced activation reaction from occurring, or that PT has only one effect, that of blocking interaction with receptors. In this latter case the present results add to a mounting series of data that are consistent with the hypothesis that unoccupied receptors are not inactive, but exhibit a basal agonist-independent activity responsible for the various effects of GTP observed on G protein-coupled effector functions in intact membranes.  相似文献   

15.
Adenylyl cyclases, the enzymes which catalyze the formation of the second messenger cAMP, are presently known to exist in yeast and related fungi, the amoeba Dictyostelium discoideum, flagellates, plasmodium, and infusoria. However, their structure-functional organization and molecular mechanisms of regulation differ considerably. Thus, in flagellates, tens of structurally similar adenylyl cyclase one-pass transmembrane proteins performing receptor functions have been discovered. In the amoeba D. discoideum, three types of adenylyl cyclases were detected, which differ by their topology, domain organization, and sensitivity to regulatory molecules and physical factors, one of which, adenylyl cyclase-A (AC-A), is similar to mammalian membrane-bound adenylyl cyclases and regulated by extracellular cAMP. Yeasts, in turn, have been shown to possess adenylyl cyclases that do not have transmembrane domains, but are able to form intermolecular complexes stabilized by interactions between repeated regions enriched in leucine residues. The data presented in this review indicate that the main molecular mechanisms underlying the actions of vertebrate adenylyl cyclases evolved as early as in the unicellular organisms and fungi. The structures and functions of adenylyl cyclases of the lower eukaryotes are much more diverse, which might be due both to the peculiarities of their life cycles and to the development at the initial stages of evolution of different models for the functioning and regulation of cAMP-dependent signaling cascades.  相似文献   

16.
DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domain. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5'-3-O-(thio) triphosphate (GTPgammaS), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCA(kqd) in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTPgammaS stimulated the adenylyl cyclase activity of DdGCA(kqd) with properties similar to those of the wild-type enzyme (decrease of K(m) and increase of V(max)), demonstrating that GTPgammaS stimulation is independent of substrate specificity. Furthermore, GTPgammaS activation of DdGCA(kqd) is retained in several null mutants of Galpha and Gbeta proteins, indicating that GTPgammaS activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.  相似文献   

17.
Platelet responses at sites of vascular injury are regulated by intracellular cAMP levels, which rise rapidly when prostacyclin (PGI(2)) is released from endothelial cells. Platelet agonists such as ADP and epinephrine suppress PGI(2)-stimulated cAMP formation by activating receptors coupled to G(i) family members, four of which are present in platelets. To address questions about the specificity of receptor:G protein coupling, the regulation of cAMP formation in vivo and the contribution of G(i)-mediated pathways that do not involve adenylyl cyclase, we studied platelets from mice that lacked the alpha subunits of one or more of the three most abundantly expressed G(i) family members and compared the results with platelets from mice that lacked the PGI(2) receptor, IP. As reported previously, loss of G(i2)alpha or G(z)alpha inhibited aggregation in response to ADP and epinephrine, respectively, producing defects that could not be reversed by adding an adenylyl cyclase inhibitor. Platelets that lacked both G(i2)alpha and G(z)alpha showed impaired responses to both agonists, but the impairment was no greater than in the individual knockouts. Loss of G(i3)alpha had no effect either alone or in combination with G(z)alpha. Loss of either G(z)alpha or G(i2)alpha impaired the ability of ADP and epinephrine to inhibit PGI(2)-stimulated adenylyl cyclase activity and caused a 40%-50% rise in basal cAMP levels, whereas loss of G(i3)alpha did not. Conversely, deletion of IP abolished responses to PGI(2) and caused cAMP levels to fall by 30%, effects that did not translate into enhanced responsiveness to agonists ex vivo. From these results we conclude that 1) cAMP levels in circulating platelets reflect ongoing signaling through G(i2), G(z), and IP, but not G(i3); 2) platelet epinephrine (alpha(2A)-adrenergic) and ADP (P2Y12) receptors display strong preferences among G(i) family members with little evidence of redundancy; and 3) these receptor preferences do not extend to G(i3). Finally, the failure of ADP and epinephrine to inhibit basal, as opposed to PGI(2)-stimulated, cAMP formation highlights the need during platelet activation for G(i) signaling pathways that involve effectors other than adenylyl cyclase.  相似文献   

18.
In this study, the mechanism of OX(1) orexin receptors to regulate adenylyl cyclase activity when recombinantly expressed in Chinese hamster ovary cells was investigated. In intact cells, stimulation with orexin-A led to two responses, a weak (21%), high potency (EC(50) approximately 1 nm) inhibition and a strong (4-fold), low potency (EC(50) = approximately 300 nm) stimulation. The inhibition was reversed by pertussis toxin, suggesting the involvement of G(i/o) proteins. Orexin-B was, surprisingly, almost equally as potent as orexin-A in elevating cAMP (pEC(50) = approximately 500 nm). cAMP elevation was not caused by Ca(2+) elevation or by Gbetagamma. In contrast, it relied in part on a novel protein kinase C (PKC) isoform, PKCdelta, as determined using pharmacological inhibitors. Yet, PKC stimulation alone only very weakly stimulated cAMP production (1.1-fold). In the presence of G(s) activity, orexins still elevated cAMP; however, the potencies were greatly increased (EC(50) of orexin-A = approximately 10 nm and EC(50) of orexin-B = approximately 100 nm), and the response was fully dependent on PKCdelta. In permeabilized cells, only a PKC-independent low potency component was seen. This component was sensitive to anti-Galpha(s) antibodies. We conclude that OX(1) receptors stimulate adenylyl cyclase via a low potency G(s) coupling and a high potency phospholipase C --> PKC coupling. The former or some exogenous G activation is essentially required for the PKC to significantly activate adenylyl cyclase. The results also suggest that orexin-B-activated OX(1) receptors couple to G(s) almost as efficiently as the orexin-A-activated receptors, in contrast to Ca(2+) elevation and phospholipase C activation, for which orexin-A is 10-fold more potent.  相似文献   

19.
1. Antidepressants have been used clinically for many years; however, the neurochemical mechanism for their therapeutic effect has not been clarified yet. Recent reports indicate that chronic antidepressant treatment directly affects the postsynaptic membrane to increase the coupling between the stimulatory GTP-binding (G) protein, Gs, and adenylyl cyclase. Tubulin, a cytoskeletal element, is involved in the stimulatory and inhibitory regulation of adenylyl cyclase in rat cerebral cortex via direct transfer of GTP to G proteins. In this study, we investigated whether the functional change of the adenylyl cyclase system caused by chronic antidepressant treatment involves an alteration of tubulin function in the regulation of adenylyl cyclase activity.2. Male Sprague–Dawley rats were treated once daily with amitriptyline or saline by intraperitoneal injection (10 mg/kg) for 21 days, and their cerebral cortex membranes and GppNHp-liganded tubulin (tubulin-GppNHp) were prepared for what.3. GppNHp-stimulated adenylyl cyclase activity in cortex membranes from amitriptyline-treated rats was significantly higher than that in control membranes. Furthermore, tubulin–GppNHp prepared from amitriptyline-treated rats was more potent than that from control rats in the stimulation of adenylyl cyclase activity in the cortex membranes of the controls. However, there was no significant difference in manganese-stimulated adenylyl cyclase activity between control and amitriptyline-treated rats.4. The present results suggest that chronic antidepressant treatment enhances not only the coupling between Gs and the catalytic subunit of adenylyl cyclase but also tubulin interaction with Gs in the cerebral cortex of the rat.  相似文献   

20.
Activation of proteinkinase C with diacylglycerol or phorbol-12-myristate-13-acetate in the rat muscle membrane or Anodonta cygnea mollusc blocks the insulin stimulating signal to adenylyl cyclase via tyrosinekinase type receptor. The same occurs with stimulating effect of biogenic amines to adenylyl cyclase via serpentine type receptor. Transduction of the inhibitory signal induced with isoproterenol to adenylyl cyclase remained unchanged in case of the proteinkinase C activation. The findings suggest that phorbol-sensitive proteinkinase C realizes a negative regulation of insulin-sensitive adenylyl cyclase signalling system. This negative regulation might prove a universal mechanism of the adenylyl cyclase system desensitisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号