首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease T(1) treatment of 30S ribosomes of Escherichia coli converts a large region at the 3' OH end of 16S ribosomal ribonucleic acid (rRNA) to low-molecular-weight RNA. The final 25 nucleotides at the 3' terminus of the molecule emerge relatively intact, whereas most of the region "upstream," for about 150 nucleotides, is converted to oligonucleotides. Identical enzyme treatment generates a fragment of about 60 nucleotides from the middle of 16S rRNA (section D'). To determine whether there are similar sequences in other bacteria, which occupy similar accessible surface locations, we treated 30S ribosomes from Azotobacter vinelandii and Bacillus stearothermophilus with RNase T(1). In each case, a fragment of RNA about 25 nucleotides in length containing the 3' OH end of 16S rRNA and a fragment of about 60 nucleotides in length similar, but not identical, in oligonucleotide composition to section D' of E. coli 16S rRNA were obtained from nuclease-treated 30S ribosomes. These data indicate that, although the primary structure at the 3' end and the middle (section D') of the various 16S rRNA's is not completely conserved, their respective conformations are conserved. A number of identical oligonucleotides were found in the low-molecular-weight fraction obtained from RNase T(1)-treated E. coli, A. vinelandii, and B. stearothermophilus 30S ribosomes. These results show that identical RNase T(1)-sensitive sequences are present in all three bacteria. Hydrolysis of these regions leads to the production of the fragments 25 and 60 nucleotides in length.  相似文献   

2.
Two large ribonucleic acid (RNA) fragments have been obtained from T1-RNase-treated 30S ribosomes of Escherichia coli. One fragment, about 475 nucleotides long, contains all the unique oligonucleotides found by Fellner and associates in sections of 16S RNA designated P, E, E', and K, and one-half the large oligonucleotides of section A. The other large fragment is about 300 nucleotides long and contains the oligonucleotides found in sections C, C', C'. The isolation of these large fragments seems to confirm the arrangement of sections within 16S RNA. There are also recovered from nuclease-treated ribosomes three small fragments, one (120 nucleotides long) from the 5' end, one (26 nucleotides long) from the 3' OH end of the chain, and another section (66 nucleotides long) from the middle of the 16S RNA chain. Small molecular weight material is also generated by nuclease treatment, and about half this material is derived from a region close to the 3' OH end of the 16S RNA chain. This indicates that the most accessible part of the rRNA of E. coli 30S ribosomes is a region 100 to 150 nucleotides long near the 3' end of the chain. A general scheme is proposed to explain the generation of the various-sized RNA products from the rRNA of the 30S ribosome.  相似文献   

3.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

4.
5.
70S ribosomes and 30S and 50S ribosomal subunits from Escherichia coli were modified under non-denaturing conditions with the chemical reagent dimethylsulfate. The ribosomal 23S and 16S RNAs were isolated after the reaction and the last 200 nucleotides from the 3' ends were analyzed for differences in the chemical modification. A number of accessibility changes could be detected for 23S and 16S RNA when 70S ribosomes as opposed to the isolated subunits were modified. In addition to a number of sites which were protected from modification several guanosines showed enhanced reactivities, indicating conformational changes in the ribosomal RNA structures when 30S and 50S subunits associate to a 70S particle. Most of the accessibility changes can be localized in double-helical regions within the secondary structures of the two RNAs. The results confirm the importance of the ribosomal RNAs for ribosomal functions and help to define the RNA domains which constitute the subunit interface of E. coli ribosomes.  相似文献   

6.
Binding of ribosomes to the 32P-labeled genomic RNA of mengovirus was studied in lysates of mouse L929 and Krebs ascites cells under conditions for initiation of translation. Upon total digestion with RNase T1, the 32P-labeled RNA protected in either 40S or 80S initiation complexes yielded four unique, large oligonucleotides. Each of these oligonucleotides occurred once in the viral RNA molecule. The same four oligonucleotides were recovered from 80S initiation complexes formed in lysates in which unlabeled mengovirus RNA had been translated extensively, indicating that recognition by ribosomes was not modulated detectably by a viral translation product. The recognition of intact, 32P-labeled mengovirus RNA by eucaryotic initiation factor 2 (eIF-2) was examined by direct complex formation. Fingerprint analysis of the RNA protected by eIF-2 against RNase T1 digestion yielded three T1 oligonucleotides that were identical to three of the four oligonucleotides protected in either 40S or 80S initiation complexes. A physical map of the large T1 oligonucleotides of the mengovirus RNA molecule was constructed, and the four protected oligonucleotides were found to map internally, within the region between the polycytidylate tract and the 3' end. For either ribosomes or eIF-2, the protected oligonucleotides could not be arranged in a continuous sequence, suggesting that they constitute at least two widely separated domains. These results show that ribosomes recognize and blind to more than a single sequence in mengovirus RNA, located internally in regions that are far removed from the 5' end of the molecule. eIF-2 itself binds with high specificity to mengovirus RNA, recognizing apparently three of the four sequences recognized by ribosomes.  相似文献   

7.
Modification of 30 S ribosomal subunits with kethoxal causes loss of their ability to associate with 50 S subunits under tight couple conditions. To identify those 16 S RNA sequences important for the association. 32P-labeled 30 S subunits were partially inactivated by reaction with kethoxal. The remaining association-competent 30 S subunits were selected from the modified population by their ability to form 70 S ribosomes. Comparison of kethoxal diagonal maps of the association-competent subunits with those of the total population of modified subunits reveals nine sites in 16 S RNA whose modification leads to loss of association activity. Eight of these sites were previously found to be protected from kethoxal attack and one was shown to have enhanced reactivity in 70 S ribosomes (Chapman &; Noller, 1977). As before, these sites are not distributed thoughout the molecule, but are found to be clustered in two regions, at the middle and at the 3′ terminus of the 16 S RNA chain.We interpret these findings in terms of a simple preliminary model for the functional organization of 16 S RNA, supported by the observations of other investigators, in which we divide the molecule into four domains. (1) Residues 1 to 600 are involved mainly in structural organization and assembly. (2) Residues 600 to 850 include sites which make contact with the 50 S subunit and are essential for subunit association. (3) Sites from the domain comprising residues 850 to 1350 line a pocket at the interface between the two ribosomal subunits. and contribute to the binding site(s) for transfer RNA. (4) Residues 1350 to 1541 also contain sequences which bind the 50 S subunit, but some sites in this domain alternatively participate in the initiation of protein synthesis.  相似文献   

8.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

9.
We have studied the binding of the octanucleotide (5'-3')d(AAGGAGGT) which is fully complementary to the 3' end of 16S ribosomal RNA, to ribosomes and to the isolated target sequence (5'-3') (ACCUCCUUA). The binding constant for 30S or 70S ribosomes is (5 +/- 2) X 10(7) mol-1, whereas the duplex containing the octa- and the nonanucleotide has an association constant of (6 +/- 3) X 10(7) mol-1. The two values are the same within the experimental error. This result suggests that basepairing at the 3' end of 16S rRNA is not stabilized by ribosomal proteins.  相似文献   

10.
O W Odom  H Y Deng  E R Dabbs  B Hardesty 《Biochemistry》1984,23(21):5069-5076
Escherichia coli ribosomal protein S21 was labeled at its single cysteine group with a fluorescent probe. Labeled S21 showed full activity in supporting MS2 RNA-dependent binding of formylmethionyl-tRNAf to 30S ribosomal subunits. Fluorescence anisotropy measurements and direct analysis on glycerol gradients demonstrate conclusively that labeled S21 binds to 50S ribosomal subunits as well as to 30S and 70S particles. The relative binding affinities are in the order 70S greater than 30S greater than 50S. Other results presented appear to indicate that S21 is bound in the same position on either 50S subunits or 30S subunits as in 70S ribosomes, suggesting that the protein is bound simultaneously to both subunits in the latter. Addition of 50S subunits to 30S particles containing probes on S21 and at the 3' end of 16S RNA caused a decrease in the energy transfer between these points. The results correspond to an apparent change in distance from 51 to 61 A.  相似文献   

11.
Properties and Location of Poly(A) in Rous Sarcoma Virus RNA   总被引:40,自引:26,他引:14       下载免费PDF全文
The poly(A) sequence of 30 to 40S Rous sarcoma virus RNA, prepared by digestion of the RNA with RNase T(1), showed a rather homogenous electrophoretic distribution in formamide-polyacrylamide gels. Its size was estimated to be about 200 AMP residues. The poly(A) appears to be located at or near the 3' end of the 30 to 40S RNA because: (i) it contained one adenosine per 180 AMP residues, and because (ii) incubation of 30 to 40S RNA with bacterial RNase H in the presence of poly(dT) removed its poly(A) without significantly affecting its hydrodynamic or electrophoretic properties in denaturing solvents. The viral 60 to 70S RNA complex was found to consist of 30 to 40S subunits both with (65%) and without (approximately 30%) poly(A). The heteropolymeric sequences of these two species of 30 to 40S subunits have the same RNase T(1)-resistant oligonucleotide composition. Some, perhaps all, RNase T(1)-resistant oligonucleotides of 30 to 40S Rous sarcoma virus RNA appear to have a unique location relative to the poly(A) sequence, because the complexity of poly(A)-tagged fragments of 30 to 40S RNA decreased with decreasing size of the fragment. Two RNase T(1)-resistant oligonucleotides which distinguish sarcoma virus Prague B RNA from that of a transformation-defective deletion mutant of the same virus appear to be associated with an 11S poly(A)-tagged fragment of Prague B RNA. Thus RNA sequences concerned with cell transformation seem to be located within 5 to 10% of the 3' terminus of Prague B RNA.  相似文献   

12.
Four types of ribosomes occurring in E. coli have been separated by sucrose gradient centrifugation. These are the 30S and 50S particles occurring in E. coli extracts (native particles), and the 30S and 50S particles which are the subunits of 70S ribosomes (derived particles). Two criteria were used in comparing these particles: (1) The type of RNA contained in each, as determined by sedimentation velocity in the analytical ultracentrifuge. (2) The ability of mixtures of 30S and 50S ribosomes (derived 30S + derived 50S, native 30S + native 50S) to undergo the reaction: [Formula: see text] Native and derived 30S particles were found to contain 16S RNA. Derived 50S particles contained 23S RNA and a small amount of 15 to 20S RNA, whereas native 50S ribosomes contained only 16S RNA. Derived 30S and 50S particles combined to form 70S particles. However, under identical conditions, native 30S and 50S particles did not form 70S ribosomes.  相似文献   

13.
RNA 3 of alfalfa mosaic virus (AlMV) contains information for two genes: near the 5' end an active gene coding for a 35 Kd protein and, near the 3' end, a silent gene coding for viral coat protein. We have determined a sequence of 318 nucleotides which contains the potential initiation codon for the 35 Kd protein at 258 nucleotides from the 5' end. This long leader sequence can form initiation complexes containing three 80 S ribosomes. A shorter species of RNA, corresponding to a molecule of RNA 3 lacking the cap and the first 154 nucleotides (RNA 3') has been isolated. The remaining leader sequence of 104 nucleotides in RNA 3' forms a single 80 S initiation complex with wheat germ ribosomes. The location of the regions of the leader sequence of RNA 3 involved in initiation complex formation with 80 S ribosomes is reported.  相似文献   

14.
E. coli 30S ribosomes in the inactive conformation were irradiated at 390 nm in the presence of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). This produces monoadducts in which AMT is attached to only one strand of an RNA duplex region. After unbound AMT was removed, some ribosomes were activated and then subjected to 360 nm irradiation; others were reirradiated without activation. Electron microscopic examination of 16S rRNA extracted from these two samples showed covalent rRNA loops indicative of rRNA crosslinks. The general pattern of loops closely matched that seen previously after direct psoralen crosslinking of 30S particles. However, the frequency of occurrence of one major class of loops formed by crosslinks between residues near position 500 and the 3' end was substantially lower for the activated samples, implying that the structure of the 16S rRNA in active and inactive 30S particles is different.  相似文献   

15.
Ordered processing of Escherichia coli 23S rRNA in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.  相似文献   

16.
The 2-thiocytidine residue at position 32 of tRNA1Arg from Escherichia coli was modified specifically with three photoaffinity reagents of different lengths, and the corresponding N-acetylarginyl-tRNA1Arg derivatives were cross-linked to the P site of E. coli 70S ribosomes by irradiation. Covalent attachment was dependent upon the presence of a polynucleotide template and exposure to light of the appropriate wavelength. From 4% to 6% of the noncovalently bound tRNA became cross-linked to the ribosome as a result of photolysis, and attachment to the P site was confirmed by the reactivity of arginine in the covalent complexes toward puromycin. Analysis of the irradiated ribosomes by sucrose-gradient sedimentation at low Mg2+ concentration revealed that the tRNA was associated exclusively with the 30S subunit in all cases. Two of the N-acetylarginyl-tRNA1Arg derivatives were attached primarily to ribosomal proteins whereas the third was cross-linked mainly to 16S RNA. Partial RNase digestion of the latter complex demonstrated that the tRNA had become attached to the 3' third of the rRNA molecule. In addition, the tRNA-rRNA bond was shown to be susceptible to cleavage by hydroxylamine and mercaptoethanol.  相似文献   

17.
A new approach for function and structure study of ribosomes based on oligodeoxyribonucleotide-directed cleavage of rRNA with RNase H and subsequent reconstitution of ribosomal subunits from fragmented RNA has been developed. The E coli 16S rRNA was cleaved at 9 regions belonging to different RNA domains. The deletion of 2 large regions was also produced by cleaving 16S rRNA in the presence of 2 or 3 oligonucleotides complementary to different RNA sites. Fragmented and deleted RNA were shown to be efficiently assembled with total ribosomal protein into 30S-like particles. The capacity to form 70S ribosomes and translate both synthetic and natural mRNA of 30S subunits reconstituted from intact and fragmented 16S mRNA was compared. All 30S subunits assembled with fragmented 16S rRNA revealed very different activity: the fragmentation of RNA at the 781-800 and 1392-1408 regions led to the complete inactivation of ribosomes, whereas the RNA fragmentation at the regions 296-305, 913-925, 990-998, 1043-1049, 1207-1215, 1499-1506, 1530-1539 did not significantly influence the ribosome protein synthesis activity, although it was also reduced. These findings are mainly in accordance with the data on the functional activity of some 16S rRNA sites obtained by other methods. The relations between different 16S RNA functional sites are discussed.  相似文献   

18.
Escherichia coli translational initiation factor 3 (IF3) may be crosslinked to the 3' end of 16S RNA in 30S ribosomal subunits. In order to determine the sequence to which IF3 may bind in vivo, samples of 5'-32P labelled 3' terminal 49-nucleotide fragment of 16S RNA were incubated 5 min. at 37 degrees in 40 mM Tris-HOAc, pH 7.4, 100 mM NaCl, 1 mM Mg (OAc)2, 1 mM ZnSO4, with or without IF3, then reacted a further 5 min with nuclease S1, RNase T1, or RNase A. Base pairing between the 5' and 3' legs of the fragment occurs in the absence of IF3, but is disrupted by IF3 binding. IF3 appears to protect some residues near the 5' end of the fragment (U1495, A1499, A1500, A1502, and A1503) from nuclease S1, and potentiates S1 attack on others (G1494, G1497, C1501, G1504, G1505, U1506, G1517, G1529, G1530, and C1533). A series of equimolar reactions at increasing dilution imply an association constant range of 1.4-7.0 X 10(7) M-1.  相似文献   

19.
A ribonuclease extracted from the venom of the cobra Naja oxiana, which shows an unusual specificity for double-stranded RNA regions, was used to obtain new insight on the topography of Escherichia coli ribosomal 16 S RNA in the 30 S subunit and in the 70 S couple. 32P-labeled 30 S subunits or reconstituted 70 S tight couples containing 32P-labeled 16 S RNA have been digested under progressively stronger conditions. The cleavage sites have been precisely localized and the chronology of the hydrolysis process studied.The enzyme cleaves the 16 S RNA within 30 S subunits at 21 different sites, which are not uniformly distributed along the molecule. These results provide valuable information on the 16 S RNA topography and evidence for secondary structure features.The binding of the 50 S subunit markedly reduces the rate of the 16 S RNA hydrolysis and provides protection for several cleavage sites. Four of them are clustered in the 3′-terminal 200 nucleotides of the molecule, one in the middle (at position 772) and one in the 5′ domain (at position 336). Our results provide further evidence that the 3′-terminal and central regions of the RNA chain are close to each other in the ribosome structure and lie at the interface of the two subunits. They also suggest that the 5′ domain is probably not involved exclusively in structure and assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号