首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lu WD  Atkins WM 《Biochemistry》2004,43(40):12761-12769
Hypericin (HYP) is a major constituent of the herbal antidepressant St. John's wort with potential utility as an antitumor photodynamic sensitizer and antiviral agent. Upon irradiation at 540-600 nm, HYP generates reactive oxygen species (ROS) and induces oxidative stress. Here, human glutathione S-transferase (GST) isoforms GSTP1-1 (P1-1) and GSTA1-1 (A1-1) are shown to bind with high affinity to HYP and to differentially quench its photodynamic properties. In steady-state turnover studies, HYP inhibits A1-1 and P1-1 with IC(50) values of 160 and 190 nM, respectively. Fluorescence titration experiments and fitting of the data to the Hill equation yield apparent K(D)s for binding to A1-1 and P1-1 of 0.65 and 0.51 microM, respectively. The recovered Hill coefficients are 1.8 for both GSTA1-1 and GSTP1-1, indicating that multiple HYPs bind to each isoform. This behavior is reminiscent of classic "ligandin" activity of GSTs, wherein nonsubstrate planar aromatic anions are sequestered on, and inhibit, the enzyme. However, HYP complexed with P1-1 is photodynamically attenuated, with minimal protein oxidation. In contrast, light-dependent, oxygen-dependent, oxidation of A1-1 was modest and oxidation of human albumin was extensive in the presence of HYP, as monitored by electrospray mass spectrometry (ESI-MS). A peptide "trap" of diffusive ROS was oxidized extensively upon irradiation of HYP in the presence of albumin but very little in the presence of P1-1 or A1-1. Solute quenching studies were used to probe the accessibility of the bound HYP in each of the protein complexes. The fluorescence of HYP complexed with albumin, A1-1, or P1-1 was quenched by I(-) with quenching rate constants (k(q)) of 1.1 x 10(9), 2.4 x 10(9) and 0.5 x10(9) M(-1) s(-1), respectively, indicating that small molecules such as O(2) have similar diffusional access to the complexed HYP in each of the proteins, eliminating the possibility of differential accessibility of oxygen as the source of a different yield of ROS. This is the first demonstration of a possible antioxidant role for the ligandin activity of GSTs and a striking example of protein-specific effects on hypericin photodynamic activity. Even highly homologous protein isoforms can differentially promote or inhibit photosensitizer activity.  相似文献   

2.
Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.  相似文献   

3.
Nitrogen monoxide (NO) plays a role in the cytotoxic mechanisms of activated macrophages against tumor cells by inducing iron release. We showed that NO-mediated iron efflux from cells required glutathione (GSH) (Watts, R. N., and Richardson, D. R. (2001) J. Biol. Chem. 276, 4724-4732) and that the GSH-conjugate transporter, multidrug resistance-associated protein 1 (MRP1), mediates this release potentially as a dinitrosyl-dithiol iron complex (DNIC; Watts, R. N., Hawkins, C., Ponka, P., and Richardson, D. R. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 7670-7675). Recently, glutathione S-transferase P1-1 (GST P1-1) was shown to bind DNICs as dinitrosyl-diglutathionyl iron complexes. Considering this and that GSTs and MRP1 form an integrated detoxification unit with chemotherapeutics, we assessed whether these proteins coordinately regulate storage and transport of DNICs as long lived NO intermediates. Cells transfected with GSTP1 (but not GSTA1 or GSTM1) significantly decreased NO-mediated 59Fe release from cells. This NO-mediated 59Fe efflux and the effect of GST P1-1 on preventing this were observed with NO-generating agents and also in cells transfected with inducible nitric oxide synthase. Notably, 59Fe accumulated in cells within GST P1-1-containing fractions, indicating an alteration in intracellular 59Fe distribution. Furthermore, electron paramagnetic resonance studies showed that MCF7-VP cells transfected with GSTP1 contain significantly greater levels of a unique DNIC signal. These investigations indicate that GST P1-1 acts to sequester NO as DNICs, reducing their transport out of the cell by MRP1. Cell proliferation studies demonstrated the importance of the combined effect of GST P1-1 and MRP1 in protecting cells from the cytotoxic effects of NO. Thus, the DNIC storage function of GST P1-1 and ability of MRP1 to efflux DNICs are vital in protection against NO cytotoxicity.  相似文献   

4.
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S‐transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi‐1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3‐month‐old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione‐conjugating activity toward 1‐chloro‐2,4‐dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH‐dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined.  相似文献   

5.
The glutathione transferases (GSTs) mediate the detoxification of a broad spectrum of electrophilic chemicals. We report here the identification and characterisation of a novel naturally occurring transition that changes codon 169 from GGC (Gly) to GAC (Asp) in the human Pi class GST, GSTP1. Expression of the variant in human HepG2 cells led to a small increase in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation compared to the wild-type protein. Asp(169) GSTP1-1 expressed at high levels in Escherichia coli displayed a small but significant increase in specific activity towards CDNB compared to Gly(169) GSTP1-1. The catalytic efficiency with CDNB was higher for Asp(169) GSTP1-1 compared to the wild-type enzyme, although the kinetic constants of the mutant and the wild-type enzyme towards glutathione were not different. Modelling indicated that the mutation does not appear to change protein conformation. The distribution of the genotypes in a normal healthy population (217 individuals) was 94.3% for the Gly/Gly genotype and 5.7% for the Gly/Asp genotype; no Asp/Asp genotypes were detected in this population. The frequency of the Asp(169) allele in the only oxidative stress-linked pathology that we have studied to date, i.e. alcoholic liver disease, was not significantly different from healthy controls. In conclusion, we have detected and characterised a novel SNP in GSTP1 that may play a role in modulating the activity of GSTP1-1.  相似文献   

6.
Glutathione S-transferases (GSTs) are enzymes involved in the metabolism of many disease-causing electrophilic substrates and protect the cells against oxidative stress. In the present study, we investigated the GSTM1, GSTT1 and GSTP1 gene polymorphisms in diabetic patients and healthy individuals and searched whether polymorphisms in GST genes are associated with diabetes mellitus (DM) in the Turkish population. The study population consisted of 98 unrelated healthy individuals and 98 patients with DM. Genotyping of GSTM1, GSTT1 and GSTP1 genes was performed using real time polymerase chain reaction with a Light Cycler instrument. Patients had a higher frequency of the GSTM1 null genotype than the control group (Odds ratios, OR = 3.7; 95% confidence intervals, CI = 2.05-6.70). However, there was no significant difference in the frequencies of the GSTT1 and GSTP1 gene polymorphisms between the patients and control group. The combined analysis of these three GST genotypes showed a further DM risk increase (OR = 5.7, 95% CI = 1.51-31.07). This is the first study to determine the association of diabetes with GST gene polymorphism in the Turkish population. These results show that GSTM1 null genotype may play a significant role in the aetiopathogeneses of DM and the GSTM1 gene may be a useful marker in the prediction of DM susceptibility of the Turkish population.  相似文献   

7.
Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these proteins in DNA damage processing via DNA damage signalling.  相似文献   

8.
The glutathione transferases (GSTs) mediate the detoxification of a broad spectrum of electrophilic chemicals. We report here the identification and characterisation of a novel naturally occurring transition that changes codon 169 from GGC (Gly) to GAC (Asp) in the human Pi class GST, GSTP1. Expression of the variant in human HepG2 cells led to a small increase in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation compared to the wild-type protein. Asp169 GSTP1-1 expressed at high levels in Escherichia coli displayed a small but significant increase in specific activity towards CDNB compared to Gly169 GSTP1-1. The catalytic efficiency with CDNB was higher for Asp169 GSTP1-1 compared to the wild-type enzyme, although the kinetic constants of the mutant and the wild-type enzyme towards glutathione were not different. Modelling indicated that the mutation does not appear to change protein conformation. The distribution of the genotypes in a normal healthy population (217 individuals) was 94.3% for the Gly/Gly genotype and 5.7% for the Gly/Asp genotype; no Asp/Asp genotypes were detected in this population. The frequency of the Asp169 allele in the only oxidative stress-linked pathology that we have studied to date, i.e. alcoholic liver disease, was not significantly different from healthy controls. In conclusion, we have detected and characterised a novel SNP in GSTP1 that may play a role in modulating the activity of GSTP1-1.  相似文献   

9.
By the introduction of 10 site-specific mutations in the dimer interface of human glutathione transferase P1-1 (GSTP1-1), a stable monomeric protein variant, GSTP1, was obtained. The monomer had lost the catalytic activity but retained the affinity for a number of electrophilic compounds normally serving as substrates for GSTP1-1. Fluorescence and circular dichroism spectra of the monomer and wild-type proteins were similar, indicating that there are no large structural differences between the subunits of the respective proteins. The GSTs have potential as targets for in vitro evolution and redesign with the aim of developing proteins with novel properties. To this end, a monomeric GST variant may have distinct advantages.  相似文献   

10.
Glutathione S-transferases (GSTs) belong to a superfamily of detoxification enzymes that provide critical defences against a large variety of chemical carcinogens and environmental toxicants. GSTs are present in most epithelial tissues of the human gastrointestinal tract. We investigated associations between genetic variability in specific GST genes (GSTM1, GSTT1 and GSTP1), the interaction with cigarette smoking and susceptibility to gastric cancer. The GSTM1, GSTT1 and GSTP1 polymorphisms were determined using real-time polymerase chain reaction (PCR) and fluorescence resonance energy transfer with Light Cycler Instrument. The study included 70 patients with gastric cancer and 204 controls. Associations between specific genotypes and the development of gastric cancer were examined by use of logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). The GSTM1 homozygous null genotype was associated with an increased risk of developing gastric cancer (OR = 1.73; 95% CI = 1.10-3.04). GSTT1 homozygous null genotype and GSTP1 genotypes were not associated with the risk of gastric cancer. Also there was no difference between cases and controls in the frequency of val-105 and ile-105 alleles (p = 0.07). After grouping according to smoking status, GSTM1 null genotype was associated with an increased gastric cancer risk for smokers (OR = 2.15; 95% CI, 1.02-4.52). There were no significant differences in the distributions of any of the other GST gene combinations. Our findings suggest that the GSTM1 null genotype may be associated with an increased susceptibility to gastric cancer.  相似文献   

11.
12.
The anti- and pro-oxidant effects of green tea catechins have been implicated in the alterations of cellular functions determining their chemoprotective and therapeutic potentials in toxicity and diseases. The glutathione S-transferases (GSTs; EC 2.5.1.18) family is a widely distributed phase-II detoxifying enzymes and the GST P1-1 isoenzyme has been shown to catalyze the conjugation of GSH with some alkylating anti-cancer agents, suggesting that over-expression of GST P1-1 would result in tumor cell resistance. Here we report the docking study of four green tea catechins and four alkylating anticancer drugs into the GST P1-1 model, as GSTs were found to be affected by tea catechins. The EGCG ligands exhibit higher docking potential with respect to the anticancer agents, with a ligand-receptor interaction pattern indicating an high conformational stability. Consequently, the competition mechanisms favourable for the green tea catechins could lead to enzyme(s) desensitisation with a reduction of the alkylating drugs metabolism. The results provide a useful theoretical contribution in understanding the biochemical mechanisms implicated in the chemotherapeutic use of green tea catechins in oxidative stress-related diseases.  相似文献   

13.
14.
While many anticancer therapies aim to target the death of tumor cells, sophisticated resistance mechanisms in the tumor cells prevent cell death induction. In particular enzymes of the glutathion-S-transferase (GST) family represent a well-known detoxification mechanism, which limit the effect of chemotherapeutic drugs in tumor cells. Specifically, GST of the class P1 (GSTP1-1) is overexpressed in colorectal tumor cells and renders them resistant to various drugs. Thus, GSTP1-1 has become an important therapeutic target. We have recently shown that thiazolides, a novel class of anti-infectious drugs, induce apoptosis in colorectal tumor cells in a GSTP1-1-dependent manner, thereby bypassing this GSTP1-1-mediated drug resistance. In this study we investigated in detail the underlying mechanism of thiazolide-induced apoptosis induction in colorectal tumor cells. Thiazolides induce the activation of p38 and Jun kinase, which is required for thiazolide-induced cell death. Activation of these MAP kinases results in increased expression of the pro-apoptotic Bcl-2 homologs Bim and Puma, which inducibly bind and sequester Mcl-1 and Bcl-xL leading to the induction of the mitochondrial apoptosis pathway. Of interest, while an increase in intracellular glutathione levels resulted in increased resistance to cisplatin, it sensitized colorectal tumor cells to thiazolide-induced apoptosis by promoting increased Jun kinase activation and Bim induction. Thus, thiazolides may represent an interesting novel class of anti-tumor agents by specifically targeting tumor resistance mechanisms, such as GSTP1-1.Glutathione-S-transferases (GSTs) represent a superfamily of cellular phase II detoxification enzyme. Specifically, GSTs catalyze the conjugation of electrophilic substances to the tripeptid glutathione (GSH, γ-L-glutamyl-L-cysteinylglycine). Thereby, hazardous metabolic products, xenobiotics and oxidative stress products become rapidly neutralized by GSTs, protecting cells from potentially damaging substances and carcinogens. Consequently, GSTs have a critical role in the detoxification of cells and inactivation of drugs.1, 2 At the present, seven classes of mammalian cytosolic GSTs are known, whose expression is regulated in a tissue-specific manner3, 4, 5 pointing toward a defined role of individual GSTs in the biotransformation of drugs and reactive compounds in diverse tissues.6, 7GSTs have a critical role in tumor therapy, as numerous tumors overexpress various GSTs, which contribute to the development of resistance to chemotherapeutic treatments.8, 9 In particular, high expression levels of GST class pi (GSTP1-1) have been reported in a wide range of solid tumors, such as colon, breast, kidney, pancreas, lung, and ovarian cancer cells, and lymphoma.10, 11, 12 The sensitivity of these tumors toward chemotherapeutic drugs, such as cisplatin, doxorubicin, and etoposide, is negatively affected by high expression levels of GSTP1-1.13, 14, 15, 16, 17 Thus, overexpression of GSTP1-1 in solid tumors limits the therapeutic effects of different chemotherapeutic drugs via their GSTP1-1-mediated inactivation.This observation identifies GSTs in general and GSTP1-1 in particular as important therapeutic targets in the treatment of solid tumors. Consequently, small molecular inhibitors of GSTs have been developed in the past to modulate GST activities and drug resistance of tumor cells, thereby sensitizing tumor cells to anticancer drugs. The therapeutic effect of the competitive inhibitors ethacrynic acid (EA) was proven in a clinical trial;18 however, long-term utility of EA was limited by its strong diuretic properties.19 A somewhat different approach includes the GST-activated pro-drugs and the GSH analog TLK199. TLK199 is metabolized and subsequently inhibits GST activities, making it a more selective GST inhibitor.20 However, thus far experimental and clinical data on solid tumors are missing.Thiazolides are a novel class of anti-infectious drugs used for the treatment of intestinal infection, and show a broad activity against intestinal pathogens.21, 22, 23, 24 The parent compound nitazoxanide (NTZ; 2-(acetolyloxy)-N-(5-nitro-2-thiazolyl)benzamide) is successfully used for the treatment of Giardia lamblia and Cryptosporidium parvum infections.25, 26, 27, 28 Though thiazolides generally have minimal side effects on host tissue cells during therapeutic treatments,29 it was recently noticed that they promote apoptosis induction in colorectal tumor cells, however, sparing non-transformed cells.30 Of interest, while the bromo-thiazolide RM4819 (N-(5-bromothiazol-2-yl)2-hydroxy-3-methylbenzamide) shows only reduced anti-microbial activity, both NTZ and RM4819 promote cell death in colorectal tumor cells. This indicates that the therapeutic targets of thiazolides are substantially different in intestinal parasites and colorectal tumor cells. Subsequent studies identified GSTP1-1 as a major RM4819-binding partner in colorectal tumor cells.30 While it was initially thought that thiazolides are inhibitors of GSTP1-1, it is presently accepted that GSTP1-1 is required for thiazolide-induced cell death induction. Interestingly, an N-acetyl-L-cysteine (NAC)-induced increase in cellular GSH levels enhanced thiazolide-induced cell death, whereas it lowered the sensitivity toward chemotherapeutic drugs by promoting their GSTP1-1-mediated inactivation.31 Thus, thiazolides appear to represent a novel class of GSTP1-1-activated pro-drugs, activated likely by conjugation to GSH, rather than GSTP1-1 inhibitors. This makes thiazolides an interesting novel class of anti-tumor drugs specifically targeting tumors with elevated levels of GSTs, and GSTP1-1 an Achilles'' heel for the potential therapeutic action of thiazolides. While thiazolides alone are relatively slow and weak inducers of apoptosis in colorectal tumor cells, they profoundly synergize with inducers of the intrinsic apoptosis pathway, such as chemotherapeutic drugs, as well triggers of the extrinsic pathway, such as TRAIL (TNF-related apoptosis-inducing ligand).31The mechanism of thiazolide-induced apoptosis and sensitization of tumor cells to other apoptosis triggers is presently incompletely understood, although GSTP1-1, the activation of the MAP kinases, and the Bcl-2-regulated mitochondrial apoptosis pathways appear to have a critical role in this process.31 In this study we investigated in more detail the underlying molecular signaling pathways leading to thiazolide-induced cell death in colorectal tumor cells. We find that activity of both the MAP kinases p38 and Jun kinase (JNK) is critical for mediating thiazolide-induced apoptosis, as their combined inhibition blocks cell death induction. In particular JNK was found to be important for the induction and activation of the downstream effectors of the Bcl-2 family, that is, the BH3-only proteins Bim and Puma. Bim and Puma appear to activate the mitochondrial pathway by interacting with and neutralizing the anti-apoptotic Bcl-2 homolog Bcl-xL, and inhibition of JNK prevented Bim and Puma induction, interaction with Bcl-xL, and induction of apoptosis. Furthermore, thiazolides induced interaction of Bim with Mcl-1 and promote the degradation of Mcl-1. While an increase in cellular GSH levels inhibited chemotherapy-induced apoptosis, it resulted in a more robust activation of JNK, Bim induction, Mcl-1 degradation, and associated thiazolide-induced cell death.In summary, we here show that thiazolides are a novel group of GSTP1-1-activated pro-drugs, which activate the mitochondrial apoptosis pathway at different levels. Given that GSTs are highly overexpressed in numerous tumors and that GSTs contribute to therapy resistance of these tumors, thiazolides may become an interesting therapeutic option for the treatment of chemoresistant tumor cells.  相似文献   

15.
Glutathione-S-transferases (GST) catalyze the conjugation of electrophilic compounds to glutathione, thus playing a key role in cell survival and tumor chemoresistance. Cyclopentenone prostaglandins (cyPG) are electrophilic eicosanoids that display potent antiproliferative properties, through multiple mechanisms not completely elucidated. Here we show that the cyPG 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2) binds to GSTP1-1 covalently, as demonstrated by mass spectrometry and by the use of biotinylated 15d-PGJ2. Moreover, cyPG inactivate GSTP1-1 irreversibly. The presence of the cyclopentenone moiety is important for these effects. Covalent interactions also occur in cells, in which 15d-PGJ2 binds to endogenous GSTP1-1, irreversibly reduces GST free-thiol content and inhibits GST activity. Protein delivery of GSTP1-1 improves cell survival upon serum deprivation whereas 15d-PGJ2-treated GSTP1-1 displays a reduced protective effect. These results show the first evidence for the formation of stable adducts between cyPG and GSTP1-1 and may offer new perspectives for the development of irreversible GST inhibitors as anticancer agents.  相似文献   

16.
Glutathione-S-transferases (GSTs) are a superfamily of enzymes that function to catalyze the nucleophilic attack of glutathione on electrophilic groups of a second substrate. GSTs are present in many organs and have been implicated in the detoxification of endogenous alpha, beta unsaturated aldehydes, including 4-hydroxynonenal (HNE). Exogenous GST protects hippocampal neurons against HNE in culture. To test the hypothesis that overexpression of GST in cells would increase resistance to exogenous or endogenous HNE induced by oxidative stress, stable transfectants of SY5Y neuroblastoma cells with GST were established. Stable GST transfectants demonstrated enzyme activities 13.7 times (Clone 1) and 30 times (Clone 2) higher than cells transfected with vector alone. GST transfectants (both Clones 1 and 2) demonstrated significantly (p <.05) increased resistance to ferrous sulfate/hydrogen peroxide (20.9% for Clone 1; 46.5% for Clone 2), amyloid beta-peptide (12.2% for Clone 1; 27.5.% for Clone 2), and peroxynitrite (24.3% for Clone 1; 43.9% for Clone 2), but not to exogenous application of HNE in culture medium. GST transfectants treated with 1,1,4-tris (acetyloxy)nonane, a nontoxic derivative of HNE that is degraded to HNE intracellularly, demonstrated a statistically significant (p <.05) increase in viability in a dose-dependent manner compared with SY5Y cells transfected with vector alone. These results suggest that overexpression of GST increases resistance to endogenous HNE induced by oxidative stress or released in the degradation of 1,1,4-tris (acetyloxy)nonane, but not to exogenous application of HNE.  相似文献   

17.
The aim of this study was to investigate associations between genetic variability in specific Glutathione S-transferases (GST) genes (GSTM1, GSTT1 and GSTP1) and susceptibility to breast cancer. Genotypes of blood specimen DNA were determined for 65 women with incident cases of breast cancer and 108 control subjects. Associations between specific genotypes and the development of breast cancer were examined by the use of logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Neither GSTT1 nor GSTM1 homozygous null genotype was associated with a significant increased risk of developing breast cancer. The presence of valine alleles compared to isoleucine alleles in codon 105 in GSTP1 did not increase the risk of breast cancer development. The risk of breast cancer associated with a combined GSTT1 and GSTM1 null genotype was 3.37 (95% CI = 0.76-2.95, p = 0.115). The only significant association between increased risk of breast cancer development and GSTs polymorphisms was found when GSTT1 null, GSTM1 null and the presence of valine in GSTP1 in codon 105 were combined (p < 0.048, OR = 3.75, 95% CI = 1.01-13.90). Our findings suggest that combined genetic variability in members of the GST gene family may be associated with an increased susceptibility to breast cancer.  相似文献   

18.
Genetic polymorphisms are natural genetic variations in the gene sequence that occur at a frequency of >1% in the population. This genetic variability (polymorphisms) can be a factor in cancer risk. The functional polymorphisms in GST genes play an important role in susceptibility to lung cancer. In our previous study, we reported that the combination of certain genotypes of GSTM1, GSTT1 and CYP1A1 is associated with lung cancer. The study has been extended to investigate the potential role of polymorphism in GSTP1 alone or in combination with the status of GSTM1 and GSTT1 genes in the likelihood of development of lung cancer. A total of 302 subjects (151 cases and 151 controls) were evaluated. Using a case-control design, individuals were genotyped for GSTs using multiplex polymerase chain reaction and restriction fragment length polymorphism techniques. The data obtained were analyzed using multiple logistic regression. The combined 'at risk' genotypes of GSTM1 null and GSTT1 null in comparison with 'wild-type' genotypes seems to be associated with a greater risk of lung cancer, but the results are not significant (odds ratio (OR) 2.0, 95% confidence interval (CI) 0.68-5.96) and for squamous cell carcinoma (SqCC) it was 1.6-fold (OR 1.6, 95% CI 0.49-5.68). In summary, our case-control study of lung cancer revealed that the effect of these polymorphisms is not very marked for different genotypic combinations of GSTP1, GSTM1 and GSTT1 in the context of developing lung cancer in a north Indian population. However, the increased risk was limited to SqCC, and was not found for other histological subtypes. Further analyses on this topic are needed.  相似文献   

19.
Electron paramagnetic resonance and kinetics experiments have been made to determine the formation, stability, and fate of the natural nitric oxide carrier, dinitrosyl-diglutathionyl-iron complex (DNDGIC), in heterogeneous systems approaching in vivo conditions. Both in human placenta and rat liver homogenates DNDGIC is formed spontaneously from GSH, S-nitroso-glutathione, and trace amounts of ferrous ions. DNDGIC is unstable in homogenates depleted of glutathione S-transferase (GST); an initial phase of rapid decomposition is followed by a slower decay, which is inversely proportional to the concentration. In the crude human placenta homogenate, GSTP1-1, which represents 90% of the cytosolic GST isoenzymes, is the preferential target for DNDGIC. It binds the complex almost stoichiometrically and stabilizes it for several hours (t1/2 = 8 h). In the presence of an excess of DNDGIC, negative cooperativity in GSTP1-1 opposes the complete loss of the usual detoxicating activity of this enzyme. In the rat liver homogenate, multiple endogenous GSTs (mainly Alpha and Mu class isoenzymes) bind the complex quantitatively and stabilize it (t1/2 = 4.5 h); negative cooperativity is also seen for these GSTs. Thus, the entire pool of cytosolic GSTs, with the exception of the Theta GST, represents a target for stoichiometric amounts of DNDGIC and may act as storage proteins for nitric oxide. These results confirm the existence of a cross-link between NO metabolism and the GST superfamily.  相似文献   

20.
Glutathione transferases (GSTs) play an important role in retinal pathophysiology. Within this family, the GSTP isoform is known as an endogenous regulator of cell survival and proliferation pathways and of cellular responses to oxidative stress. In the present study we silenced GSTP in R28 cells, a retinal precursor cell line with markers of both glial and neuronal origin, and obtained stable clones which were viable and, unexpectedly, characterized by a more neuronal phenotype. The degree of neuronal differentiation was inversely correlated with GSTP residual expression levels. The clone with the lowest expression of GSTP showed metabolic reprogramming, a more favorable redox status and, despite its neuronal phenotype, a sensitivity to glutamate and 4-hydroxynonenal toxicity comparable to that of control cells. Altogether, our evidence shows that near full depletion of GSTP in retinal precursor cells, triggers neuronal differentiation and prosurvival metabolic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号