首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitivity of ruminal microorganisms to pentachlorophenol.   总被引:2,自引:2,他引:0       下载免费PDF全文
Pentachlorophenol (PCP) is used extensively as a biocidal agent, and there is considerable concern about the adverse effects of this compound in biological ecosystems. The effects of PCP on the growth and fermentative activity of cultures of mixed ruminal microorganisms and the sensitivity of 14 ruminal bacterial species to PCP in pure culture were examined in this study. Increasing concentrations of PCP (9.4 to 375.4 microM) depressed growth and propionate concentrations in cultures of mixed ruminal microorganisms. Wide differences in the sensitivities of ruminal bacterial strains to various concentrations of PCP were observed. Cellulolytic strains were highly sensitive to PCP, while amylolytic, sugar-utilizing, and intermediate acid-utilizing strains were more resistant. Growth of major succinate-producing strains was depressed by PCP. Strains which depend on substrate level phosphorylation appeared to be more resistant. The data suggest that the adverse effects of PCP on ruminal microorganisms may be the result of its role as both an uncoupler of electron transport and a protonophore.  相似文献   

2.
Microorganisms in ruminal ingesta and pure cultures of anaerobic ruminal bacteria of different physiological and morphological groups incorporated (14)C from labeled 2-methylbutyrate during growth. The radioactivity was incorporated mainly into lipid and protein. Isoleucine was the only labeled amino acid found in acid hydrolysates of protein from either pure or mixed cultures. Radioactivity in isoleucine synthesized from 2-methylbutyrate-1-(14)C was entirely in carbon-2. Thus, the carboxylation of 2-methylbutyrate is a pathway for synthesis of isoleucine different from that operative in many aerobic and facultative microorganisms. The specific activity of isoleucine from 2-methylbutyrate by Bacteroides rumminicola 23 increased with higher concentrations of 2-methylbutyrate (2.6 to 44 x 10(-5)m) in the growth medium. At the highest concentration, the specific activity of isoleucine synthesized was 40% of the specific activity of the 2-methylbutyrate in the growth medium. The use of enzymatic casein hydrolysate, oxytocin, or vasopressin rather than ammonia as nitrogen source for growth of strain 23 depressed the incorporation of 2-methylbutyrate into isoleucine. Synthesis of isoleucine from 2-methylbutyrate appears to be an important reaction in the rumen.  相似文献   

3.
AIMS: To examine the effects of ionophores on Salmonella and Escherichia coli O157:H7 in pure and mixed ruminal fluid cultures. METHODS AND RESULTS: Four Salmonella serotypes (Dublin, Derby, Typhimurium, and Enteriditis) and two strains of E. coli O157:H7 (ATCC 43895 and FDIU 6058) were cultured in the presence of varying concentrations of ionophores (monensin, lasalocid, laidlomycin propionate, and bambermycin) in pure and mixed ruminal fluid cultures. Bacterial growth rates in pure culture were not affected (P > 0.10) by ionophores at concentrations up to 10 times the approximate rumen ionophore concentration under normal feeding regimens. Likewise, ionophores had no effect (P > 0.10) on Salmonella or E. coli CFU plated from 24-h ruminal fluid incubations. Ionophore treatment decreased (P < 0.01) the acetate : propionate ratio in ruminal fluid cultures as expected. CONCLUSIONS: Ionophores had no effect on the foodborne pathogens Salmonella and E. coli O157:H7 in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that ionophore feeding would have little or no effect on Salmonella or E. coli populations in the ruminant.  相似文献   

4.
Effects of Thymol on Ruminal Microorganisms   总被引:2,自引:0,他引:2  
Thymol (5-methyl-2-isopropylphenol) is a phenolic compound that is used to inhibit oral bacteria. Because little is known regarding the effects of this compound on ruminal microorganisms, the objective of this study was to determine the effects of thymol on growth and lactate production by the ruminal bacteria Streptococcus bovis JB1 and Selenomonas ruminantium HD4. In addition, the effect of thymol on the in vitro fermentation of glucose by mixed ruminal microorganisms was investigated. Neither 45 nor 90 μg/ml of thymol had any significant effect on growth or lactate production by S. bovis JB1, but 180 μg/ml of thymol completely inhibited growth and lactate production. In the case of S. ruminantium HD4, 45 μg/ml of thymol had little effect on growth and lactate production; however, 90 μg/ml of thymol completely inhibited growth of S. ruminantium HD4. Thymol also decreased glucose uptake by whole cells of both bacteria. When mixed ruminal microorganisms were incubated in medium that contained glucose, 400 μg/ml of thymol increased final pH and the acetate to propionate ratio and decreased concentrations of methane, acetate, propionate, and lactate. In conclusion, thymol was a potent inhibitor of glucose fermentation by S. bovis JB1 and S. ruminantium HD4. Even though thymol treatment decreased methane and lactate concentrations and increased final pH in mixed ruminal microorganism fermentations of glucose, concentrations of acetate and propionate were also reduced. Received: 13 May 2000 / Accepted: 14 June 2000  相似文献   

5.
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria.  相似文献   

6.
New strains with enhanced resistance to monensin were developed from Prevotella (Bacteroides) ruminicola subsp. ruminicola 23 and P. ruminicola subsp. brevis GA33 by stepwise exposure to increasing concentrations of monensin. The resulting resistant strains (23MR2 and GA33MR) could initiate growth in concentrations of monensin which were 4 to 40 times greater than those which inhibited the parental strains. Resistant strains also showed enhanced resistance to nigericin and combinations of monensin and nigericin but retained sensitivity to lasalocid. Glucose utilization in cultures of the monensin-sensitive strains (23 and GA33) and one monensin-resistant strain (23MR2) was retarded but not completely inhibited when logarithmic cultures were challenged with monensin (10 mg/liter). Monensin challenge of cultures of the two monensin-sensitive strains (23 and GA33) was characterized by 78 and 51% decreases in protein yield (milligrams of protein per mole of glucose utilized), respectively. Protein yields in cultures of resistant strain 23MR2 were decreased by only 21% following monensin challenge. Cell yields and rates of glucose utilization by resistant strains GA33MR were not decreased by challenge with 10 mg of monensin per liter. Resistant strains produced greater relative proportions of propionate and less acetate than the corresponding sensitive strains. The relative amounts of succinate produced were greater in cultures of strains 23, GA33, and 23MR2 following monensin challenge. However, only minor changes in end product formation were associate with monensin challenge of resistant strain GA33MR. These results suggest that monensin has significant effects on both the growth characteristics and metabolic activities of these predominant, gram-negative ruminal bacteria.  相似文献   

7.
Ruminal lactic acid-producing bacteria were selectively isolated and enumerated using a one hour aerobic exposure prior to incubation on a semi-selective Lactobacillus medium, MRS, under anaerobic conditions. The technique allowed growth of pure cultures of ruminal Lactobacillus spp. and Streptococcus bovis without supporting the growth of pure cultures of any of the prominent ruminal bacterial species. In mixed cultures, the one hour aerobic pre-incubation inhibited the growth of the obligate anaerobic ruminal bacteria which can otherwise grow on the MRS medium, and the subsequent anaerobic incubation permitted maximal recovery of the weakly aerotolerant ruminal lactic acid-producing Lactobacillus spp. and Streptococcus spp. The efficacy of this technique in selecting exclusively for the lactic acid-producing bacteria was also demonstrated from populations of rumen bacteria from mixed culture end-point in vitro fermentation, continuous in vitro culture and isolations from fresh ruminal samples.  相似文献   

8.
Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate‐bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth‐stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (103 cells · mL?1). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic‐resistant or antibiotic‐sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic‐sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic‐resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed‐bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal‐bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species.  相似文献   

9.
The use of pentachlorophenol (PCP) was banned or restricted in many countries worldwide because of its adverse influences on the ecological environment and humans. However, the potential disrupting effects of PCP on denitrifying microorganisms have warranted more analysis. In this study, the impacts of PCP on denitrification were investigated by using Paracoccus denitrificans as a model denitrifying bacterium. Compared with the control, the presences of 10 and 50 μM of PCP were found to significantly decrease the denitrification efficiencies from 98.5 to 87.2% and 68.7%, respectively. The mechanism studies showed that PCP induced the generation of reactive oxygen species, which decreased the vital enzymes activities related to glycolysis process, causing the disturbance of the metabolism of P. denitrificans utilizing carbon source (glucose) and the growth of the cell, and subsequently the generation of electron donor (NADH) for denitrification via NAD+ reduction was severely depressed. Further studies indicated that PCP also decreased the genes expression of several key enzymes responsible for denitrification, such as napA of nitrate reductase (NAR), nirS of nitrite reductase, norB of nitric oxide reductase, and nosZ of nitrous oxide reductase; however, there was only the enzyme activity of NAR was remarkably inhibited.  相似文献   

10.
The nutristat, a substrate concentration-controlled continuous culture, was used to grow pentachlorophenol (PCP)-degrading microorganisms. The PCP concentration control system consisted of on-line measurement of the PCP concentration in the culture vessel with a tangential filter and a flowthrough spectrophotometer. With PCP concentrations between 45 and 77 microM, a stable situation was established in the nutristat, with an average dilution rate of 0.035 +/- 0.003 h-1. Compared with those of fed-batch cultures and chemostat cultures, the growth rates of microorganisms in the PCP nutristat were significantly higher, leading to considerable time savings in the enrichment procedure. In addition, PCP accumulation to severe inhibitory levels in the culture is prevented because the set point determines the (maximum) PCP concentration in the culture. The use of the nutristat as a tool for the growth of bacteria that degrade toxic compounds is discussed.  相似文献   

11.
Of 15 strains of coliform bacteria, all isolated from human feces, 14 inhibited the growth of Shigella flexneri in mixed culture. In every case, when inhibition occurred, exponential growth of Shigella was interrupted in the mixed culture and the organisms entered into either a stationary or a death phase. None of the test coliform strains produced colicines active against Shigella. An analysis of mixed-culture environments at the time Shigella inhibition occurred revealed that the inhibition was not due to nutrient depletion nor to the development of adverse pH or oxidation-reduction potentials in themselves. In mixed cultures, the coliform strains produced formic and acetic acids in concentrations that inhibited Shigella growth. With one exception, the coliform strains also greatly reduced the culture medium. In average concentrations produced, the formic and acetic acids exerted a bactericidal effect on Shigella under the reduced conditions found in mixed cultures. The acids were only moderately toxic for the coliform strains under the same conditions. Results indicate that volatile acid production and concomitant reduction of the medium are the mechanisms by which coliform bacteria inhibit Shigella growth in mixed cultures.  相似文献   

12.
Forty-four microorganisms were studied for their influence on staphylococcal growth and enterotoxin production. Inhibition was found to be more common than stimulation. Two types of inhibition were observed: inhibition of staphylococcal growth, and inhibition of enterotoxin formation with no apparent effect on growth. By use of a plate test, 12 of the 44 food microorganisms were found to inhibit staphylococcal growth at 35 C. Of the 12, 3 also inhibited growth at 25 C. No significant differences in inhibition were observed with the 15 strains of enterotoxigenic staphylococci. In meat slurries, inhibition of staphylococcal growth was found to be greater at 25 C than at 35 C. Results on inhibition obtained from the plate test could not be correlated with the effect of the organisms in slurries. Environmental conditions were found to affect markedly the influence of food microorganisms on staphylococci. Of the 44 food microorganisms studied, only Bacillus cereus was observed to stimulate significantly staphylococcal growth and enterotoxin formation. Stimulation was more pronounced with Staphylococcus aureus 196E than with other strains of enterotoxigenic staphylococci. Bacillus megaterium and Brevibacterium linens were inhibited by staphylococci. These organisms were completely inhibited when inoculated in mixed cultures with staphylococci. In pure cultures, good staphylococcal growth was found to be accompanied by enterotoxin production; however, in the presence of food microorganisms, good staphylococcal growth occurred without the formation of detectable levels of enterotoxin A.  相似文献   

13.
Polyhydroxyalkanoates (PHAs) are the polymers of hydroxyalkanoates that accumulate as carbon/energy or reducing-power storage material in various microorganisms. PHAs have been attracting considerable attention as biodegradable substitutes for conventional polymers. To reduce their production cost, a great deal of effort has been devoted to developing better bacterial strains and more efficient fermentation/recovery processes. The use of mixed cultures and cheap substrates can reduce the production cost of PHA. Accumulation of PHA by mixed cultures occurs under transient conditions mainly caused by intermittent feeding and variation in the electron donor/acceptor presence. The maximum capacity for PHA storage and the PHA production rate are dependent on the substrate and the operating conditions used. This work reviews the development of PHA research. Aspects discussed include metabolism and various mechanisms for PHA production by mixed cultures; kinetics of PHA accumulation and conversion; effects of carbon source and temperature on PHA production using mixed cultures; PHA production process design; and characteristics of PHA produced by mixed cultures.  相似文献   

14.
The impact of 2-monochlorophenol (MCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) on the microbial community of an acidic forest soil was studied under controlled laboratory conditions by spiking microcosms with the pollutants at concentrations ranging from 0.1 to 5000 mg kg(-1). A decrease in the cumulative respirometric values and changes in the bacterial and fungal community composition were detected at 1000 mg MCP kg(-1), 100 mg TCP kg(-1) and 100 and 1000 mg PCP kg(-1). However, drastic effects on the microbial community were revealed only at higher concentrations of MCP and TCP, although the toxicity of PCP was expected to be stronger. The acidic condition of the soil presumably reduces bioavailability of PCP, leading to less pronounced effects than the other pollutants. This finding highlights the consideration of pollutant bioavailability in each environment to adequately assess contamination effects. Twenty-two different chlorophenol-resistant and potentially degrading microorganisms were isolated from highly polluted microcosms. The most resistant isolates were related to Burkholderia arboris, Bacillus circulans, Paenibacillus taichungensis, Luteibacter rhizovicina and Janibacter melonis. These isolates also showed the capacity to reduce the concentration of TCP or PCP between 15% and 35% after 5 days of incubation (initial concentration of 50 mg L(-1)). The isolate related to B. circulans is an atypical case of a member of the Firmicutes group for which chlorophenol-degrading capacities have been described.  相似文献   

15.
The bacterial strains resistant to pentachlorophenol (PCP) and hexavalent chromium [Cr(VI)] were isolated from treated tannery effluent of a common effluent treatment plant. Most of the physico-chemical parameters analyzed were above permissible limits. Thirty-eight and four bacterial isolates, respectively were found resistant to >50 μg/ml concentration of [Cr(VI)] and the same level of PCP. Out of the above 42 isolates, only one was found simultaneously tolerant to higher levels of both PCP (500 μg/ml) and Cr(VI) (200 μg/ml), and hence was selected for further studies. To the best of our knowledge, this is the first report in which a native bacterial isolate simultaneously tolerant to such a high concentrations of Cr(VI) and PCP has been reported. The culture growth was best at 0.4% (w/v) glucose as an additional carbon source and 0.2% (w/v) ammonium chloride as a nitrogen source. The growth results with cow urine as a nitrogen source were comparable with the best nitrogen source ammonium chloride. The isolate exhibited resistance to multiple heavy metals (Pb, As, Hg, Zn, Co & Ni) and to antibiotics nalidixic acid and polymixin-B. The efficacy of bacterial isolate for growth, PCP degradation (56.5%) and Cr(VI) bioremediation (74.5%) was best at 48 h incubation. The isolate was identified as Bacillus sp. by morphological and biochemical tests. The 16S rDNA sequence analysis revealed 98% homology with Bacillus cereus. However, further molecular analysis is underway to ascertain its likelyhood of a novel species.  相似文献   

16.
The antimicrobial activities of monensin and lasalocid against representative strains of ruminal bacteria were evaluated in medium containing three different concentrations of potassium (1.3, 7.9, or 23.3 mM). The growth of Eubacterium ruminantium was inhibited by low concentrations of ionophores (less than or equal to 0.16 mg/liter), while the strain of Streptococcus bovis tested was resistant to high concentrations of ionophores (40 mg/liter) at all potassium concentrations tested. The MICs of the ionophores for strains of Bacteroides succinogenes, Butyrivibrio fibrisolvens, Ruminococcus albus, and Ruminococcus flavefaciens and for one strain of Bacteroides ruminicola increased with increasing potassium concentrations in the medium. High concentrations of ionophores (40 mg/liter) decreased the maximum cell yields or increased the lag times or both in cultures of one strain of Bacteroides ruminicola and two strains of Selenomonas ruminantium but did not completely inhibit the growth of these organisms. Increased potassium concentrations in the medium (from 7.9 to 23.3 mM) decreased the lag times or increased the cell yields or both when these three strains were grown in ionophore-containing medium, while the activities of lasalocid and monensin against these organisms were enhanced in the medium containing low potassium concentrations (1.3 mM). The data from this study suggest that extracellular potassium concentrations may influence the antimicrobial activities of ionophores in the rumen.  相似文献   

17.
The antimicrobial activities of monensin and lasalocid against representative strains of ruminal bacteria were evaluated in medium containing three different concentrations of potassium (1.3, 7.9, or 23.3 mM). The growth of Eubacterium ruminantium was inhibited by low concentrations of ionophores (less than or equal to 0.16 mg/liter), while the strain of Streptococcus bovis tested was resistant to high concentrations of ionophores (40 mg/liter) at all potassium concentrations tested. The MICs of the ionophores for strains of Bacteroides succinogenes, Butyrivibrio fibrisolvens, Ruminococcus albus, and Ruminococcus flavefaciens and for one strain of Bacteroides ruminicola increased with increasing potassium concentrations in the medium. High concentrations of ionophores (40 mg/liter) decreased the maximum cell yields or increased the lag times or both in cultures of one strain of Bacteroides ruminicola and two strains of Selenomonas ruminantium but did not completely inhibit the growth of these organisms. Increased potassium concentrations in the medium (from 7.9 to 23.3 mM) decreased the lag times or increased the cell yields or both when these three strains were grown in ionophore-containing medium, while the activities of lasalocid and monensin against these organisms were enhanced in the medium containing low potassium concentrations (1.3 mM). The data from this study suggest that extracellular potassium concentrations may influence the antimicrobial activities of ionophores in the rumen.  相似文献   

18.
The objectives of this study were to examine the effects of chlorhexidine diacetate on growth and L-lactate production by Streptococcus bovis JB1 as well as the effects of this antimicrobial compound on the mixed ruminal microorganism fermentation. Addition of 1.8 μM chlorhexidine diacetate to glucose medium resulted in a lag in growth by S. bovis JB1, and growth was completely inhibited in the presence of 3.6, 9.0, and 18 μM chlorhexidine. When 6.2 μM chlorhexidine diacetate was added to glucose medium after 2 h of incubation, glucose utilization and L-lactate production by S. bovis JB1 were reduced. Phosphoenolpyruvate-dependent phosphorylation of 14C-glucose by toluene-treated cells of S. bovis JB1 was inhibited by increasing concentrations (1.8 to 18 μM) of chlorhexidine, whereas only the 18 μM concentration reduced the membrane potential (ΔΨ). Chlorhexidine diacetate was a potent inhibitor of L-lactate and methane production from glucose fermentation by mixed ruminal microorganisms. However, because chlorhexidine also decreased acetate and propionate concentrations and increased ammonia concentrations in mixed-culture incubations, this antimicrobial compound may have limited application as a ruminant feed additive. Received: 4 November 1997 / Accepted: 22 December 1997  相似文献   

19.
Many cases of Pseudomonas aeruginosa infection are considered to be secondary superinfections, resulting from bacterial colonization. Such cases of superinfection with P. aeruginosa developing after administration of cephalosporin or penicillin are offering serious clinical problems. To make a fundamental analysis of the development of such superinfections, attempts were made to compare the growth patterns of Escherichia coli and P. aeruginosa in pure and mixed cultures and to determine the effects of cephalothin, cefazolin, cephalexin, and ampicillin on the growth patterns. In mixed cultures, the growth of P. aeruginosa was markedly inhibited by E. coli. The higher the concentration of each of the cephalosporins and ampicillin added to the mixed culture, the smaller the population of E. coli sensitive to these agents. When the population of E. coli became smaller than that of P. aeruginosa, which is resistant to these agents, the latter was restored to the same population level as that in pure cultures. Experimental bacterial colonization, by which the predominant population of E. coli was replaced by that of P. aeruginosa in mixed culture, was brought about more efficiently with the cephalosporins than with ampicillin. This might be accounted for by the difference in minimal inhibitory concentration for P. aeruginosa between ampicillin and the other three agents.  相似文献   

20.
In this work, a strain of anaerobic pentachlorophenol (PCP) degrader, Desulfitobacterium frappieri PCP-1, was used to augment a mixed bacterial community of an anaerobic upflow sludge bed reactor degrading PCP. To estimate the efficiency of augmentation, the population of PCP-1 in the reactor was enumerated by a competitive PCR technique. The PCP-1 strain appeared to compete well with other microorganisms of the mixed bacterial community, with its population increasing from 10(6) to 10(10) cells/g of volatile suspended solids within a period of 70 days. Proliferation of strain PCP-1 allowed for a substantial increase of the volumetric PCP load from 5 to 80 mg/liter of reaction volume/day. A PCP removal efficiency of 99% and a dechlorination efficiency of not less than 90.5% were observed throughout the experiment, with 3-Cl-phenol and phenol being observable dechlorination intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号