首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The encapsulation of crosslinked enzyme aggregates (CLEA) of penicillin G acylase into a very rigid polymeric matrix based on polyvinyl alcohol (LentiKats) has been used successfully to improve the inadequate mechanical properties of CLEA. This encapsulation decreased CLEA activity by only around 40%. As compensation, a significant improvement in the stability of the CLEA in the presence of organic solvents was detected. This could be related to the highly hydrophilic environment inside the LentiKats biocatalysts: Partition experiments showed that the concentration of dioxane inside LentiKats was lower than in the reaction medium. In fact, thermal stability was about the same as in the corresponding CLEA. This permitted great improvement in the reaction rate for thermodynamically controlled synthesis of a model antibiotic (using phenylacetic acid and 7-amino-deacetoxycefalosporanic acid). Even more importantly, yields could be improved by using LentiKats-encapsulated CLEA, very likely by a favorable product/substrate partition. Thus, this very simple technique not only provides an efficient technique for solving the mechanical stability problem associated with CLEA, but also greatly improves the behavior of CLEA in organic media.  相似文献   

2.
L: -Aspartate ammonia-lyase from Bacillus sp. YM55-1 (AspB, EC 4.3.1.1) catalyzes the reversible conversion of L: -aspartate (Asp) into fumarate and ammonia with a high specific activity toward the substrate. AspB was expressed in Escherichia coli and partially purified by heat precipitation and saturation with ammonium sulfate reaching purification factor of 7.7 and specific activity of 334?U/mg of protein. AspB was immobilized by covalent attachment on Eupergit(?) C (epoxy support) and MANA-agarose (amino support), and entrapment in LentiKats(?) (polyvinyl alcohol) with retained activities of 24, 85 and 63?%, respectively. Diffusional limitations were only observed for the enzyme immobilized in LentiKats(?) and were overcome by increasing substrate concentration. Free and immobilized AspB were used for the synthesis of aspartate achieving high product concentration (≥450?mM) after 24?h of reaction. Immobilized biocatalysts were efficiently reused in 5 cycles of Asp synthesis, keeping over 90?% of activity and reaching over 90?% of conversion in all the cases.  相似文献   

3.
Insoluble (cell-bound) dextransucrase from Leuconostoc mesenteroides B-1299 was encapsulated in highly elastic and stable hydrogels formed by polyvinyl alcohol. The gelation was carried out by controlled partial drying at room temperature, resulting in lens-shaped particles, called LentiKats. A similar recovery of activity (approximately 55%) was achieved when compared with entrapment in calcium alginate gels. Under reaction conditions, the protein leakage in LentiKats was reduced from 18% to 4% by pre-treatment of the dextransucrase with glutaraldehyde. The immobilized dextransucrases were tested in the acceptor reaction with methyl α-D-glucopyranoside. The conversion to oligosaccharides using Lentikat-dextransucrase was higher than that obtained for alginate-dextransucrase, probably due to the reduction of diffusional limitations derived from its lenticular shape. In addition, a shift of selectivity towards the synthesis of oligosaccharides containing α(1→2) bonds was observed for the Lentikat-biocatalysts. These non-digestible compounds are supposed to be specifically fermented by beneficial species of the human microflora (prebiotic effect). The Lentikat-entrapped dextransucrase can be efficiently reused in this process at least for five cycles of 24 h.  相似文献   

4.
High levels of an aromatic nitrilase (about 37 microkat/L culture) were induced in Fusarium solani O1 after transfer of the mycelium from a rich medium into a medium with 20 mmol/L picolinonitrile. The mycelium was entrapped in lense-shaped particles consisting of a polyvinyl alcohol/polyethylene glycol copolymer (LentiKats). The cell-free extract was immobilized by hydrophobic binding onto a Butyl Sepharose column. The enzyme was useful for the mild hydrolysis of nicotinonitrile, isonicotinonitrile and benzonitrile.  相似文献   

5.
A continuous process to deacidify apple juices and cider was developed by entrapping Oenococcus oeni in LentiKats, a new polyvinyl alcohol hydrogel. For a residence time of 0.55 h, malic acid was completely converted into lactic acid when the LentiKats bioreactor was fed with apple juice at pH 4.46 and 3.95 and thirty three percent of initial malic acid (6.7 g l–1) was converted when the initial apple juice pH was 2.30. The optimal malolactic activity of this bioreactor was obtained at 30°C and a 50% reduction in malic acid conversion was measured between 15°C and 20°C, at a residence time of 0.3 h. The LentiKats bioreactor gave better performance than continuous reactor with Oenococcus oeni immobilised in alginate beads (specific malic acid consumption increased by a factor of 4.6) due to the increase of the ratio external surface to volume, allowing better mass transfer.  相似文献   

6.
AIMS: To examine the potential of Zymomonas mobilis entrapped into polyvinylalcohol (PVA) lens-shaped immobilizates in batch and continuous ethanol production. METHODS AND RESULTS: Cells, free or immobilized in PVA hydrogel-based lens-shaped immobilizates - LentiKats, were cultivated on glucose medium in a 1 l bioreactor. In comparison with free cell cultivation, volumetric productivity of immobilized batch culture was nine times higher (43.6 g l(-1) h(-1)). The continuously operated system did not improve the efficiency (volumetric productivity of the immobilized cells 30.7 g l(-1) h(-1)). CONCLUSIONS: We demonstrated Z. mobilis capability, entrapped into LentiKats, in the cost-efficient batch system of ethanol production. SIGNIFICANCE AND IMPACT OF THE STUDY: The results reported here emphasize the potential of bacteria in combination with suitable fermentation technology in industrial scale. The innovation compared with traditional systems is characterized by excellent long-term stability, high volumetric productivity and other technological advantages.  相似文献   

7.
Bacillus coagulans spores were immobilized in polyvinylalcohol (PVA) hydrogel, lens-shaped capsules known as LentiKats. The immobilized spores were used in an anaerobic, non-sterile process in the repeated batch fermentations at 50 degrees C and produced lactic acid at 7.4 g l(-1) h(-1), which was double that of the free cell system. No mechanical deformation of the capsules and no contamination were observed.  相似文献   

8.
Conditions optimum for the assay of alkaline phosphatase of marine pseudomonad B-16 (ATCC 19855) and for maintaining the activity of the enzyme have been determined. The pH for optimal activity of the cell-bound enzyme was 9.0, whereas that for the enzyme after its release from the cells exceeded 9.4. Release was effected by first washing the cells in 0.5 M NaCl and then suspending them in 0.5 M sucrose. In the absence of salts, the activity of the cell-bound enzyme decreased rapidly at 25 C and less rapidly at 4 C. This loss of activity could be arrested but not restored by adding Mg(2+). In the presence of Na(+), activity of the cell-bound enzyme dropped to about 50% of that prevailing initially, but in this case adding Mg(2+) restored enzyme activity completely. The activity of the enzyme after its release from the cells into 0.5 M sucrose was approximately 50% of that of the equivalent amount of enzyme in the original cells. This activity was relatively stable at both 25 and 4 C. Adding Mg(2+) to the released enzyme restored its activity to that of the cell-bound form. The synthesis of alkaline phosphatase by the cells was not affected by adding 50 mM inorganic phosphate to the growth medium. The K(m) of the released enzyme for p-nitrophenyl phosphate was found to be 6.1 x 10(-5) M.  相似文献   

9.
Purification of partially purified fibrinolytic enzyme was attempted by chromatography on DEAE-cellulose (D-52) column. The results indicated the resolution of three protein components and one minor component. It was shown that the first component was the major of the applied sample. Examination of fibrinolytic activity of the different fractions of components one and two indicated that only the first component possessed fibrinolytic activity. Fibrinolytic activity of the applied sample was completely recovered by the first enzyme component, and the most active fraction of this enzyme component showed 3.3-fold purification. The pure fibrinolytic enzyme was relatively more stable at pH 6.98, which was also optimal for its activity. After heating the enzyme solution (pH = 6.98) at 55 and 60 degrees C for 15 min, the enzyme still retained 34.7 and 17.3% of its original activity, respectively. Zinc ions partially inhibited the enzyme. Copper ions activated the enzyme. Iodine partially inhibited the fungal fibrinolytic enzyme at a final concentration of 10(-4)M; at 10(-2)M complete inactivation was brought about. The p-chloromercuribenzoate at a final concentration of 10(-2)M brought about partial inhibition whereby the enzyme lost about 33% of its original activity. Reduced glutathione brought about activation of the enzyme, while trypsin inhibitor did not show any effect on enzyme activity.  相似文献   

10.
The effect of various compounds on the activity and stability of a phage-associated enzyme lysing cells of streptococci of groups A and C (PlyC) was investigated. Substantial inhibition of the enzyme activity was revealed at an increased ionic strength (in the presence of NaCl) and upon the addition of carbohydrates (mono-, di-, and polysaccharides), i.e., agents stabilizing many enzymes. It was established that the enzyme activity was substantially reduced in the presence of positively charged polyelectrolytes and surfactants, whereas incubation with micelle-forming substances and negatively charged polyelectrolytes led to PlyC activation and stabilization. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions (pH 6.3, room temperature), ture), it practically completely lost its activity in 2 days. Characteristics of the enzyme thermal inactivation were found, in particular, its half-inactivation time at various temperatures; these allowed us to estimate its behavior at any temperature and to recommend conditions for its storage and use.  相似文献   

11.
The effect of various compounds on the activity and stability of a phage-associated enzyme lysing cells of streptococci of groups A and C (PlyC) was investigated. Substantial inhibition of the enzyme activity was revealed at an increased ionic strength (in the presence of NaCl) and upon the addition of carbohydrates (mono-, di-, and polysaccharides), i.e., agents stabilizing many enzymes. It was established that the enzyme activity was substantially reduced in the presence of positively charged polyelectrolytes and surfactants, whereas incubation with micelle-forming substances and negatively charged polyelectrolytes led to PlyC activation and stabilization. It was shown that, in the mycelial polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions (pH 6.3, room temperature), it practically completely lost its activity in 2 days. Characteristics of the enzyme thermal inactivation were found, in particular, its semiinactivation time at various temperatures; these allowed us to estimate its behavior at any temperature and to recommend conditions for its storage and use.  相似文献   

12.
A thermostable extracellular protease of Bacillus sp. APR-4 was purified by size-exclusion and ion-exchange chromatographic methods and its properties were studied. The purified enzyme had a specific activity of 21,000 U/mg of protein and gave single band on SDS/PAGE with a molecular mass of 16.9 KDa. This protease had an optimal pH of 9 and exhibited its highest activity at 60 degrees C. The enzyme activity was inhibited by EDTA, suggesting the presence of metal residue at the active site. Ca2+ (5 mM) had stabilising effect on the activity of protease, but Cu2+ (5 mM) had inhibitory effect. The enzyme exhibited highest specificity towards casein (1%) and had a Km of 26.3 mg/ml and a Vmax of 47.6 U/mg with casein as a substrate. The stability of this enzyme was evaluated in the presence of some organic solvents and the enzyme was stable in methanol, petroleum ether and ethanol. Detergents (Wheel, Farishta) had stimulatory effect on the activity of this enzyme.  相似文献   

13.
A W229H mutant of 4-alpha-glucanotransferase (4-alpha-GTase) from Pyrococcus furiosus was constructed and its catalytic properties were studied to investigate the role of W229 in the catalytic specificities of the enzyme. Various activities and kinetic parameters were determined for the wild-type and W229H mutant enzymes. The transglycosylation factor and transglycosylation activity of the mutant enzyme markedly decreased, but its hydrolysis activity was scarcely affected. It was discovered that the k(cat)/K(m) value of transglycosylation activity significantly decreased to about 15% of that of the wild type, while k(cat)/K(m) value of hydrolysis activity changed little for the mutant enzyme. The hydrophobicity of W229 was thought to be critical to the transglycosylation activity of the enzyme based on the enzyme's modeled tertiary structures.  相似文献   

14.
A triple system (inverse micellae) that simulates the membrane environment of the enzyme was studied. Inverse micellae were obtained using anionic (aerosol OT), synthetic (Brij 56), and natural (lecithin) surfactants. It was found that upon inclusion of an enzyme into inverse micellae, its activity can be regulated by changing the structure and nature of the surfactant matrix. It was shown that enzyme activity in micellar environment is much higher than in water solution. Moreover, the enzyme solubilized in inverse micellae (acid phosphatase) shows a superactivity. It was found that surfactants specifically interact with solubilized enzyme, and the activity of the enzyme is inversely proportional to surfactant concentration. The mechanisms of viscotropic regulation of enzyme activity are discussed.  相似文献   

15.
Tyrosinase activity in reversed micelles   总被引:1,自引:0,他引:1  
The hydroxylase and oxidase activities of mushroom tyrosinase were studied in both sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane and cetyltrimethylammonium bromide (CTAB)/hexane/chloroform reversed micelles. The enzyme presented its highest activity when the water to surfactant molar ratio (W 0) was 20 for both systems. When entrapped in the AOT reversed micelles, the enzyme activity decreased with the increase in AOT concentration at a constant W 0, and the enzyme not only presented a higher reaction rate related to its oxidase activity but also a shorter lag period related to its hydroxylase activity. The relation between water activity and W 0 revealed that enzyme activity in reversed micelles was more related to the size of the micelles which was determined by W 0 and less to the water activity. Tyrosinase in CTAB reversed micelles showed potential for the analysis of o-diphenols.  相似文献   

16.
Various factors affecting the catalytic activity of pure lipase of Pseudomonas fluorescens in microaqueous benzene were investigated with respect to lactonization of 15-hydroxypentadecanoic acid. Without deposition of the enzyme or of the enzyme plus activity enhancer (additive) on celite powder, the pure enzyme was very poorly dispersed in the microaqueous benzene, resulting in very low activity. The enzyme immobilized on celite powder exhibited the highest activity at a free water content of ca. 0.083%. When a sugar alcohol such as erythritol, arabitol, or sorbitol was added before lyophilization with approximate proportion of 3 g/g enzyme, marked increases in the enzyme activity were observed at a shifted optimal free water content, i.e., 0.04%. Inclusion of phosphotidylcholine resulted in a somewhat higher activity than in the system of enzyme plus celite only. Addition of lactose, bovine serum albumin, casein, dextran, polyvinyl alcohol, phosphate, or NaCl all caused a decrease in the enzyme activity. From the effects of the additives examined, it is deduced that the following three factors are required for a pure enzyme to exhibit its full activity in a water-immiscible organic solvent: (1) optimum moisture content, (2) disperser (support particles having enough surface area on which the enzyme is thinly deposited), and (3) activity enhancer (additive) at optimum concentration The importance of noting the purity of the enzyme preparation is emphasized when its catalysis in an organic solvent is investigated.  相似文献   

17.
Chicken brain Arylsulfatase A (E.C.3.1.6.1) was immobilized by interaction with Concanavalin A. The immobilized enzyme retained its catalytic activity and this enzyme can be reused without appreciable loss of activity. The storage stability of bound and soluble enzymes was comparable and binding of enzyme to Concanavalin A increases its thermal stability. Kinetic studies indicated that bound enzyme shows similar anomalous kinetics as that of free enzyme but slight change was observed in relation to pH optima, Km value and activation energy.  相似文献   

18.
Rat Brain Synaptosomal ATP:AMP-Phosphotransferase Activity   总被引:3,自引:1,他引:2  
Adenylate kinase activity (ATP:AMP-phosphotransferase; EC 2.7.4.3) was studied in various subcellular fractions of rat brain tissues. Because of the presence of other adenosine nucleotide-utilizing enzymes, adenylate kinase activity was assayed in both the forward and reverse directions by using coupled enzyme systems and by using a specific adenylate kinase inhibitor, P1,P5-di(adenosine-5') pentaphosphate. As expected, the highest specific adenylate kinase activity (2.89 mumol/min/mg of protein) was detected in the cytosolic brain fraction. However, substantial enzyme activity (0.68 mumol/min/mg) was also found in the intact synaptosomal fraction isolated on Percoll/sucrose gradients. The increased specific enzyme activity of purified synaptosomes and the differences found between the kinetic parameters of the membrane-bound and cytosolic enzyme forms suggest that the synaptosomal adenylate kinase activity cannot be attributed to the small amount of contaminating cytosol present in our preparations. The adenylate kinase enzyme adhered to purified synaptic plasma membranes and was not released by washings with isoosmotic sucrose medium. The facts that the adenylate kinase enzyme activity could be measured in intact synaptosomal preparations and that both its substrates and its inhibitors do not cross intact plasma membranes support the possibility that the synaptosomal adenylate kinase is an ecto-enzyme.  相似文献   

19.
以海洋微生物溶菌酶(ⅧL)为研究对象,分别检验几种表面剂对MBL活性的影响,着重研究烷基多苷(APG)对其活性的影响。结果表明,APG与阳离子烷基多苷(矾PG)分别提高MBL相对酶活性为21%,15%,SDS降低该酶活性约为15%,Tween20和Tween80对MBL活性的影响不明显。MBL含量大于5.0mg/mL时,对大肠杆菌、金黄色葡萄、白色念珠球菌有抑菌作用。0.5%~1.5%的APG无明显抑菌作用。将5.0mg/mMBL与1.0mg/mLAPG复配后(简称CEP),发现APG能明显增强MBL抑菌作用,CEP具有较好地杀菌作用;CEP在54℃培养箱中放置14d后,其杀菌率保持不变,说明CEP的杀菌性能的稳定性良好。  相似文献   

20.
If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号