首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular phylogenies of lineages that split from one another in short succession are often difficult to resolve because different loci and different sites within the same locus yield incongruent relationships. The incongruity is commonly attributed to two causes: differential assortment of ancestral polymorphisms and homoplasy. To assess the relative contribution of these two causes, sequences of 57 segments from 51 loci in six primate lineages (human, chimpanzee, gorilla, orangutan, macaque, and tamarin, abbreviated as H, C, G, O, M, and T, respectively) were subjected to "partitioning" analysis, in which phylogenetically informative sites were identified in all 15 pairwise comparisons of each of the 57 segments and tallied for their support or lack thereof for each of the theoretically possible phylogenies. The six lineages include one of the best known cases of a difficult-to-resolve phylogeny: the trichotomy (H, C, G), in which the three lineages may have diverged from each other within a short period of time. In this period many of the ancestral polymorphisms apparently persisted and yielded phylogenetically incongruent signals. By contrast, no ancestral polymorphism is expected to have survived during the interval separating the divergences of the O, M, and T lineages from the ancestor of the (H, C, G) group. Any phylogenetic incompatibilities at sites in the O, M, and T lineages relative to the (H, C, G) group are therefore presumably the result of homoplasy. The frequency of homoplasy estimated in this manner is unexpectedly high: 12% for the (H, C, G) clade and 19% for the (H, C, G, O) clade. At least three-quarters of the 48% incompatibility observed in the (H, C) clade is attributable to the sorting out of ancestral polymorphisms coupled with intragenic recombination. Possible reasons for this high level of homoplasy in the O, M, and T lineages are discussed, and a computer simulation has been carried out to produce a model explaining the observed data.  相似文献   

2.
Mapping human genetic ancestry   总被引:1,自引:0,他引:1  
The human genome is a mosaic with respect to its evolutionary history. Based on a phylogenetic analysis of 23,210 DNA sequence alignments from human, chimpanzee, gorilla, orangutan, and rhesus, we present a map of human genetic ancestry. For about 23% of our genome, we share no immediate genetic ancestry with our closest living relative, the chimpanzee. This encompasses genes and exons to the same extent as intergenic regions. We conclude that about 1/3 of our genes started to evolve as human-specific lineages before the differentiation of human, chimps, and gorillas took place. This explains recurrent findings of very old human-specific morphological traits in the fossils record, which predate the recent emergence of the human species about 5-6 MYA. Furthermore, the sorting of such ancestral phenotypic polymorphisms in subsequent speciation events provides a parsimonious explanation why evolutionary derived characteristics are shared among species that are not each other's closest relatives.  相似文献   

3.
4.
The genetic electrophoretic variation at up to 43 protein loci was studied in four hominoid, three cercopithecoid, and three ceboid species. Phylogenetic reconstructions based on genetic distances show that the two chimpanzee species are closest to humans, while the gorilla diverged earlier than the split between humans and the chimpanzee. Within the cercopithecoids the green monkey apparently diverged earlier than the macaques, and within the ceboids, the owl monkey is only distantly related to the capuchin and squirrel monkeys. The hypothesis that rates of evolution at the level of protein electrophoretic variation are equal both among the groups, as well as within each group, could not be rejected.  相似文献   

5.
Statistical methods for computing the standard errors of the branching points of an evolutionary tree are developed. These methods are for the unweighted pair-group method-determined (UPGMA) trees reconstructed from molecular data such as amino acid sequences, nucleotide sequences, restriction-sites data, and electrophoretic distances. They were applied to data for the human, chimpanzee, gorilla, orangutan, and gibbon species. Among the four different sets of data used, DNA sequences for an 895-nucleotide segment of mitochondrial DNA (Brown et al. 1982) gave the most reliable tree, whereas electrophoretic data (Bruce and Ayala 1979) gave the least reliable one. The DNA sequence data suggested that the chimpanzee is the closest and that the gorilla is the next closest to the human species. The orangutan and gibbon are more distantly related to man than is the gorilla. This topology of the tree is in agreement with that for the tree obtained from chromosomal studies and DNA-hybridization experiments. However, the difference between the branching point for the human and the chimpanzee species and that for the gorilla species and the human-chimpanzee group is not statistically significant. In addition to this analysis, various factors that affect the accuracy of an estimated tree are discussed.   相似文献   

6.
Additional DNA sequence information from a range of primates, including 13.7 kb from pygmy chimpanzee (Pan paniscus), was added to data sets of beta-globin gene cluster sequence alignments that span the gamma 1, gamma 2, and psi eta loci and their flanking and intergenic regions. This enlarged body of data was used to address the issue of whether the ancestral separations of gorilla, chimpanzee, and human lineages resulted from only one trichotomous branching or from two dichotomous branching events. The degree of divergence, corrected for superimposed substitutions, seen in the beta-globin gene cluster between human alleles is about a third to a half that observed between two species of chimpanzee and about a fourth that between human and chimpanzee. The divergence either between chimpanzee and gorilla or between human and gorilla is slightly greater than that between human and chimpanzee, suggesting that the ancestral separations resulted from two closely spaced dichotomous branchings. Maximum parsimony analysis further strengthened the evidence that humans and chimpanzees share the longest common ancestry. Support for this human-chimpanzee clade is statistically significant at P = 0.002 over a human-gorilla clade or a chimpanzee-gorilla clade. An analysis of expected and observed homoplasy revealed that the number of sequence changes uniquely shared by human and chimpanzee lineages is too large to be attributed to homoplasy. Molecular clock calculations that accommodated lineage variations in rates of molecular evolution yielded hominoid branching times that ranged from 17-19 million years ago (MYA) for the separation of gibbon from the other hominoids to 5-7 MYA for the separation of chimpanzees from humans. Based on the relatively late dates and mounting corroborative evidence from unlinked nuclear genes and mitochondrial DNA for the close sister grouping of humans and chimpanzees, a cladistic classification would place all apes and humans in the same family. Within this family, gibbons would be placed in one subfamily and all other extant hominoids in another subfamily. The later subfamily would be divided into a tribe for orangutans and another tribe for gorillas, chimpanzees, and humans. Finally, gorillas would be placed in one subtribe with chimpanzees and humans in another, although this last division is not as strongly supported as the other divisions.  相似文献   

7.
8.
We determined four nucleotide sequences of the hominoid immunoglobulin alpha (C alpha) genes (chimpanzee C alpha 2, gorilla C alpha 2, and gibbon C alpha 1 and C alpha 2 genes), which made possible the examination of gene conversions in all hominoid C alpha genes. The following three methods were used to detect gene conversions: 1) phenetic tree construction; 2) detection of a DNA segment with extremely low variability between duplicated C alpha genes; and 3) a site by site search of shared nucleotide changes between duplicated C alpha genes. Results obtained from method 1 indicated a concerted evolution of the duplicated C alpha genes in the human, chimpanzee, gorilla, and gibbon lineages, while results obtained from method 2 suggested gene conversions in the human, gorilla, and gibbon C alpha genes. With method 3 we identified clusters of shared nucleotide changes between duplicated C alpha genes in human, chimpanzee, gorilla, and gibbon lineages, and in their hypothetical ancestors. In the present study converted regions were identified over the entire C alpha gene region excluding a few sites in the coding region which have escaped from gene conversion. This indicates that gene conversion is a general phenomenon in evolution, that can be clearly observed in non-functional regions.  相似文献   

9.
10.
Koga A  Notohara M  Hirai H 《Genetica》2011,139(2):167-175
Subterminal satellite (StSat) repeats, consisting of 32-bp-long AT-rich units (GATATTTCCATGTT(T/C)ATACAGATAGCGGTGTA), were first found in chimpanzee and gorilla (African great apes) as one of the major components of heterochromatic regions located proximal to telomeres of chromosomes. StSat repeats have not been found in orangutan (Asian great ape) or human. This patchy distribution among species suggested that the StSat repeats were present in the common ancestor of African great apes and subsequently lost in the lineage leading to human. An alternative explanation is that the StSat repeats in chimpanzee and gorilla have different origins and the repeats did not occur in human. The purpose of the present study was quantitative evaluation of the above alternative possibilities by analyzing the nucleotide variation contained in the repeats. We collected large numbers of sequences of repeat units from genome sequence databases of chimpanzee and gorilla, and also bonobo (an African great ape phylogenetically closer to chimpanzee). We then compared the base composition of the repeat units among the 3 species, and found statistically significant similarities in the base composition. These results support the view that the StSat repeats had already formed multiple arrays in the common ancestor of African great apes. It is thus suggested that humans lost StSat repeats which had once grown to multiple arrays.  相似文献   

11.
The HLA region harbors some of the most polymorphic loci in the human genome. Among them is the class II locus HLA-DRB1, with more than 400 known alleles. The age of the polymorphism and the rate at which new alleles are generated at HLA loci has caused much controversy over the years. Previous studies have mostly been restricted to the 270 base pairs that constitute the second exon and represent the most variable part of the gene. Here, we investigate the evolutionary history of the HLA-DRB1 locus on the basis of an analysis of 15 genomic full-length alleles (10-15 kb). In addition, the variation in 49 complete coding sequences and 322 exon 2 sequences were analyzed. When excluding exon 2 from the analysis, the diversity at the synonymous sites was found to be similar to the intron diversity. The overall diversity in noncoding region was also similar to the genome average. The DRB1*03 lineage has been found in human, chimpanzee, bonobo, gorilla, and orangutan. An ancestral "proto HLA-DRB1*03 lineage" appeared to have diverged in the last 5 million years into the human-specific lineages *08, *11, *13, and *14. With exception to exon 2, both the coding- and the noncoding diversity suggests a recent origin (<1 million years ago) for most of the alleles at the HLA-DRB1 locus. Sites encoding for amino acids involved in antigen binding [antigen recognizing sites (ARS)] appear to have a more ancient origin. Taken together, the recent origin of most alleles, the high diversity between allelic lineages, and the ancient origin of sequence motifs in exon 2, is consistent with a relatively rapid generation of novel alleles by gene conversion like events.  相似文献   

12.
We analyzed the origin of allelic diversity at the class II HLA-DRB1 locus, using a complex microsatellite located in intron 2, close to the polymorphic second exon. A phylogenetic analysis of human, gorilla, and chimpanzee DRB1 sequences indicated that the structure of the microsatellite has evolved, primarily by point mutations, from a putative ancestral (GT)x(GA)y-complex-dinucleotide repeat. In all contemporary DRB1 allelic lineages, with the exception of the human *04 and the gorilla *08 lineages, the (GA)y repeat is interrupted, often by a G-->C substitution. In general, the length of the 3' (GA)y repeat correlates with the allelic lineage and thus evolves more slowly than a middle (GA)z repeat, whose length correlates with specific alleles within the lineage. Comparison of the microsatellite sequence from 30 human DRB1 alleles showed the longer 5' (GT)x to be more variable than the shorter middle (GA)z and 3' (GA)y repeats. Analysis of multiple samples with the same exon sequence, derived from different continents, showed that the 5' (GT)x repeat evolves more rapidly than the middle (GA)z and the 3' (GA)y repeats, which is consistent with findings of a higher mutation rate for longer tracts. The microsatellite-repeat-length variation was used to trace the origin of new DRB1 alleles, such as the new *08 alleles found in the Cayapa people of Ecuador and the Ticuna people of Brazil.  相似文献   

13.
The subject of this review is an issue that was hotly debated even before the emergence of molecular data into the field of primate systematics. It is an understatement to say that dissenting opinions exist as to whether the chimpanzee (Pan) or gorilla (Gorilla) is the closest relative of humans (Homo) or whether, in fact, a three-way split in an ancestral population resulted in three separate lineages that are evolutionarily equidistant. The purpose of this review is to introduce the novice to the problems and methodologies of molecular phylogenetic analysis and to summarize the studies that have applied this approach in attempting to resolve the human-African ape trichotomy. The intent is to present the contribution of each study to the resolution of higher primate relationships.  相似文献   

14.
Science is fairly certain that the gorilla lineage separated from the remainder of the hominoid clade about eight million years ago, 2 , 4 and that the chimpanzee lineage and hominin clade did so about a million years after that. 1 , 2 However, just this year, 2007, it was discovered that although the human head louse separated from the congeneric chimpanzee body louse (Pediculus) around the same time as the chimpanzee and hominin lineages split, 3 the human pubic louse apparently split from its sister species, the congeneric gorilla louse, Pthirus, 4.5 million years after their host lineages split. 3 No tested explanations exist for the discrepancy. Much is known about hominin evolution, but much remains to be discovered. The same is true of primate socioecology in general and gorilla socioecology in particular.  相似文献   

15.
A severe bottleneck in the size of the PV Alu subfamily in the common ancestor of human and gorilla has been used to isolate an Alu source gene. The human PV Alu subfamily consists of about one thousand members which are absent in gorilla and chimpanzee DNA. Exhaustive library screening shows that there are as few as two PV Alus in the gorilla genome. One is gorilla-specific, i.e., absent in the orthologous loci in both human and chimpanzee, suggesting the independent retrotranspositional activity of the PV subfamily in the gorilla lineage. The second of these two gorilla PV Alus is present in both human and chimpanzee DNAs and is the single PV Alu known to precede the radiation of these three species. The orthologous Alu in gibbon DNA resembles the next older Alu subfamily. Thus, this Alu locus is originally templated by a non-PV source gene and acquired characteristic PV sequence variants by mutational drift in situ, consequently becoming the first member and presumptive founder of this PV subfamily. Correspondence to: C.W. Schmid  相似文献   

16.
Summary The pattern of banding induced by five restriction enzymes in the chromosome complement of chimpanzee, gorilla, and orangutan is described and compared with that of humans. The G banding pattern induced by Hae III was the only feature common to the four species. Although hominid species show almost complete chromosomal homology, the restriction enzyme C banding pattern differed among the species studied. Hinf I did not induce banding in chimpanzee chromosomes, and Rsa I did not elicit banding in chimpanzee and orangutan chromosomes. Equivalent amounts of similar satellite DNA fractions located in homologous chromosomes from different species or in nonhomologous chromosomes from the same species showed different banding patterns with identical restriction enzymes. The great variability in frequency of restriction sites observed between homologous chromosome regions may have resulted from the divergence of primordial sequences changing the frequency of restriction sites for each species and for each chromosomal pair. A total of 30 patterns of banding were found informative for analysis of the hominid geneaalogical tree. Using the principle of maximum parsimony, our data support a branching order in which the chimpanzee is more closely related to the gorilla than to the human.  相似文献   

17.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   

18.
19.
The nucleotide sequences of the gorilla and orangutan myc loci have been determined by the dideoxy nucleotide method. As previously observed in the human and chimpanzee sequences, an open reading frame (ORF) of 188 codons overlapping exon 1 could be deduced from the gorilla sequence. However, no such ORF appeared in the orangutan sequence.The two sequences were aligned with those of human and chimpanzee as hominoids and of gibbon and marmoset as outgroups of hominoids. The branching order in the evolution of primates was inferred from these data by different methods: maximum parsimony and neighborjoining.Our results support the view that the gorilla lineage branched off before the human and chimpanzee diverged and strengthen the hypothesis that chimpanzee and gorilla are more related to human than is orangutan. Correspondence to: F. Galibert  相似文献   

20.
Han K  Lee J  Meyer TJ  Wang J  Sen SK  Srikanta D  Liang P  Batzer MA 《PLoS genetics》2007,3(10):1939-1949
With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD) in the chimpanzee genome since the divergence of the chimpanzee and human lineages (~6 million y ago). Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of ~771 kb of genomic sequence) attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be “at-risk” motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号