首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

2.
3.
In nitrogen-starved Chlamydomonas reinhardtii , wild type, strain 21 gr cells, consumption of nitrate, nitrite and ammonium may occur in the dark in the absence of an added carbon source. Consumption of ammonium in the dark was about 25% higher than in the light, while consumption of nitrate or nitrite in the dark was lower than in the light.
N starvation produced a linear increase with time in the intracellular level of glutamine synthetase (GS, EC 6.3.2.1) and glutamate synthase (NADH-GOGAT, EC 1.4.1.14 and ferredoxin-GOGAT, EC 1.4.7.1) activities in C. reinhardtii . The effect on GS1 (3-fold) and NADH-GOGAT (4.5-fold) was higher than that on GS2 (1.5-fold) and ferredoxin-GOGAT (1.5-fold).
Experiments with methylammonium, L-methionine-D, L-sulfoximine (MSX) and azaserine suggest that: 1) Ammonium itself decreases the intracellular levels of glutamine synthetase and ferredoxin-glutamate synthase activities; and 2) a metabolite resulting from ammonium assimilation by the alga may be a negative modulator of NADH-glutamate synthase activity.  相似文献   

4.
Seedlings of Scots pine ( Pinus sylvestris L.) were grown on perlite for 21 days under controlled conditions. Apart from the water control, KNO3 (15 m M ), (NH4)2SO4 (7.5 m M ), and NH4NO3 (15 m M ) were offered to study the effects of a high nitrogen supply on nitrogen assimilation. In some experiments 1.3 m M potassium was added to the basic ammonium solutions. In labelling studies nitrate and ammonium were 2.3 atom%15N-enriched. It was found that over the 21-day period approximately three times more ammonium-N was taken up than nitrate-N. However, nitrate and ammonium, applied simultaneously, were taken up to the same extent as if they were applied separately (additivity). The presence of K+ in the medium did not affect N-uptake. Among the soluble N-containing compounds nitrate, ammonium and 8 amino acids were quantified. It was found that assimilation of nitrate can cope with the uptake of NO3 under all circumstances. Neither free nitrate nor ammonium or amino acids accumulated to an extent exceeding the values of water-grown seedlings. On the other hand, in case of high ammonium supply considerably more nitrogen was taken up than could be incorporated into nonsoluble N-containing substance ('protein'). The remaining nitrogen was found to accumulate in intermediary storage pools (free NH4+, glutamine, asparagine, arginine). Part of this accumulated N could be incorporated into protein when potassium was offered in the nutrient solution. It is concluded that potassium is a requirement for a high rate of protein synthesis not only in crop plants but also in conifers.  相似文献   

5.
N 5 N 10-Methylenetetrahydromethanopterin reductase was purified 13-fold to apparent homogeneity from methanol grown Methanosarcina barkeri . The colourless enzyme was found to be composed of four identical subunits of apparent molecular mass 36 kDa. It catalysed the reduction of methylenetetrahydromethanopterin ( K m=15 μM) to methyltetrahydromethanopterin with reduced coenzyme F420 ( K m=12 μM) at a specific rate ( V max) of 2200 μmol min−1· mg protein−1 ( K cat=1320 s−1). With respect to coenzyme specificity, molecular properties and catalytic mechanism the enzyme was found to be similar to CH2=H4MPT reductase of Methanobacterium thermoautotrophicum which phylogenetically is only distantly related to M. barkeri .  相似文献   

6.
Abstract: Cells dissociated from the postnatally developing rat cerebellum retain their high-affinity carrier-mediated transport systems for [3H]GABA ( K t=1.9 μM, V = 1.8 pmol/106 cells/min) and [3H]glutamate ( K t= 10 μM, V = 7.9 pmol/106 cells/min). Using a unit gravity sedimentation technique it was demonstrated that [3H]GABA was taken principally into fractions that were enriched in inhibitory neurons (Purkinje, stellate and basket cells). [3H]β-alanine (which is taken up specifically by the glial GABA transport system) and [3H]glutamate were concentrated by glial-enriched fractions. However [3H]glutamate uptake was minimal in fractions enriched in precursors of granule cells, which may utilise this amino acid as their neurotransmitter. These results are discussed in relation to reports of high-affinity [3H]glutamate uptake by glia. The role of glutamate transport in glutamatergic cells is also considered. The data suggest that high-affinity glutamate transport is a property of glial cells but not granule neurons.  相似文献   

7.
To investigate nitrogen assimilation in Lolium perenne L. colonized by the arbuscular mycorrhizal (AM) fungus Glomus fasciculatum (Thax. sensu Gerd.), nitrate uptake, key enzyme activities, and 15N incorporation into free amino acids were measured. After a 4-h labelling period with [15N]nitrate, 15N content was higher in roots and shoots of AM-plants than in those of control plants. Glutamine synthetase (GS) and nitrate reductase (NR) activities were increased in shoots of AM-plants, but not in roots. More label was incorporated into amino acids in shoots of AM plants. Glutamine, glutamate, alanine and γ-aminobutyric acid were the major sinks for 15N in roots and shoots of control and AM plants. Interactions between mycorrhizal colonization, phosphate and nitrate nutrition and NR activity were investigated in plants which received different amounts of phosphate or nitrate. In shoots of control plants, NR activity was not stimulated by high levels of phosphate nutrition but was stimulated by high levels of nitrate. At 4 m M nitrate in the nutrient solution, NR activity was similar in control and AM plants. We concluded that mycorrhizal effects on nitrate assimilation are not mediated via improved phosphate nutrition, but could be due to improved nitrogen uptake and translocation.  相似文献   

8.
Abstract: The metabolic fate of glutamate in astrocytes has been controversial since several studies reported >80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 m M [U-13C]glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2–0.5 m M glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C]lactate was essentially unchanged within the range of 0.2–0.5 m M glutamate, whereas the amount of [13C]aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 m M , suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 m M and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

9.
Abstract: The excitatory amino acid glutamate was previously shown to stimulate aerobic glycolysis in astrocytes by a mechanism involving its uptake through an Na+-dependent transporter. Evidence had been provided that Na+,K+-ATPase might be involved in this process. We have now measured the activity of Na+,K+-ATPase in cultured astrocytes, using ouabain-sensitive 86Rb uptake as an index. l -Glutamate increases glial Na+,K+-ATPase activity in a concentration-dependent manner with an EC50 = 67 µ M . Both l - and d -aspartate, but not d -glutamate, produce a similar response, an observation that is consistent with an uptake-related effect rather than a receptor-mediated one. Under basal conditions, concentration-dependent inhibition of Na+,K+-ATPase activity in astrocytes by ouabain indicates the presence of a single catalytic site with a low affinity for ouabain ( K 0.5 = 113 µ M ), compatible with the presence of an α1 isozyme. On stimulation with glutamate, however, most of the increased activity is inhibited by low concentrations of ouabain ( K 0.5 = 20 n M ), thus revealing a high-affinity site akin to the α2 isozyme. These results suggest that astrocytes possess a glutamate-sensitive isoform of Na+,K+-ATPase that can be mobilized in response to increased neuronal activity.  相似文献   

10.
Abstract: Brain sodium uptake in vivo was studied using a modified intracarotid bolus injection technique in which the uptake of 22Na + was compared with that of the relatively impermeable molecule, [3H]l-glucose. At a Na + concentration of 1.4 m M , Na + uptake was 1.74 ± 0.07 times greater than l -glucose uptake. This decreased to 1.34 ± 0.04 at 140 m M Na +, indicating saturable Na + uptake. Relative Na + extraction was not affected by pH but was inhibited by amiloride ( K i= 3 ± 10−7 M ) and by 1 m M furosemide. The effects of these two inhibitors were additive. Brain uptake of 86Rb +, a K + analogue, was measured to study interaction of K + with Na + transport systems. Relative 86Rb + extraction was also inhibited by amiloride; however, it was not inhibited by furosemide. The results suggest the presence of two distinct transport systems that allow Na + to cross the luminal membrane of the brain capillary endothelial cell. These transport systems could play an important role in the movement of Na + from blood to brain.  相似文献   

11.
A procedure for the partial purification of a non-specific alkaline phosphatase (EC 3.1.3.1.) from the embryonic axes of chick-pea seeds is described. Ammonium sulphate precipitation, DEAE-cellulase chromatography, Sephacryl S-200 chroma-tography and polyacrylamide gel electrophoresis are the most important steps. The molecular weight of this non-specific enzyme, as determined by Sephacryl S–200 gel filtration and SDS–polyacrylamide gel electrophoresis, was estimated as being 68 and 78 kDa respectively; the optimum pH for p-nitrophenylphosphate hydrolysis was 7.5, and the Km for this artificial substrate was 0.5 mM. The enzyme catalyzes the hydrolysis of a variety of organic phosphate esters. The best substrates are: phos-phoenolpymvate (Km= 2.4 m M ), NADP+ (Km= 4.0 m M ), 5'-AMP (Km= 4.5 m M ), 5'-ADP (Km= 6.1 m M ) and ribose-5P (Km= 5.8 m M ); but it is unable to hydrolyze 5'-ATP, phosphocreatine and tripolyphosptiate. Phospate was a competitive inhibitor. Zn2+, K+, Hg2+ and Mo6+ were strong inhibitors, whereas F and Ca2+ inhibited weakly; Co2+ and Ni2+ were activators.  相似文献   

12.
In Myrica gale L. plants the assimilation of ammonia released by symbiotic Frankia was observed by 15N2 labelling and subsequent analysis of the isotopic enrichment of nodule amino acids over time by single ion monitoring gas chromatography-mass spectrometry. In detached nodules of Myrica , glutamine was the first amino acid labelled at 30 s and subsequently the amino acids glutamate, aspartate, alanine and γ-amino butyric acid (GABA) became labelled. This pattern of labelling is consistent with the incorporation of ammonium via glutamine synthetase [GS; EC 6.3.1.2]. No evidence for the ammonium assimilation via glutamate dehydrogenase [GDH; EC 1.4.1.2] was observed as glutamate became labelled only after glutamine. Using attached nodules and pulse-chase labelling, we observed synthesis of glutamine, glutamate, aspartate, alanine, GABA and asparagine, and followed the transport of fixed nitrogen in the xylem largely as glutamine and asparagine. Estimation of the cost of nitrogen fixation and asparagine synthesis in Myrica nodules suggests a minimum of one sucrose required per asparagine produced. Rapid translocation of recently fixed nitrogen was observed in Myrica gale nodules as 80% of the nitrogen fixed during a 1-h period was translocated out of the nodules within 9 h. The large pool of asparagine that is present in nodules may buffer the transport of nitrogen and thus act to regulate nitrogen fixation via a feedback mechanism.  相似文献   

13.
NADP-dependent glutamate dehydrogenase (EC 1.4.1.4) extracted from Sphaerostilbe repens was purified to homogeneity by using ammonium sullate fractionation hydroxyapatite and DEAE-cellulose column chromatography and, finally, preparative polyacrylamide gel electrophoresis. The turnover number of the enzyme for the amination reaction was about 66000 mol substrate transformed min-1 (molecule of GDH)-1. Molecular weight of the native enzyme was estimated to be 280000 dalton by polyacrylamide gradient gel electrophoresis. The same technique in the presence of sodium dodecyl sulfatc gave a single protein band that corresponded to the subunit molecular weight of 48000 dalton. Thus, it is concluded that NADP-GDH is composed of six identical polypeptidic chains.
The pH optimums were 6.9 and 8.4 for the forward and reverse reactions respectively. The NADP-GDH lost practically none of its activity for ten days at 4°C and for 15 h at room temperature, but was inactivated by higher temperatures. Thiol compounds such as 2-mercaptoethanol and dithiolhrcitol protected the enzyme from rapid inactivation. The Michaelis constants for GDH were 0.64, 0.049. 0.043 and 5.5 m M for α-ketoglutaratc. NADPH, NADP and glutamate, respectively. The enzyme had a negative cooperativity for ammonium (Hill number of 0.66), and its Km value increased from 2.6 to 21.2 m M when the ammonium concentration exceeded 16 m M . The deamination reaction was highly sensitive to inhibition by ammonium, while the amination reaction was only slightly inhibited by glutamate. These results, considered together with the Km values, indicate that the NADP-GDH in Sphaerostilbe repens is primarily concerned with glutamate biosynthesis.  相似文献   

14.
The isolation and characterization of an l -aspartate aminotransferase (AAT) activity (EC 2.6.1.1) in the unicellular green alga Chlamydomonas reinhardtii 6145c are reported for the first time. The enzyme transaminates aspartate with the 2-oxoglutarate-glutamate system, and exhibits maximum aminotransferase activity at pH 7.8 and 37°C. It has an Mr of 138 kDa, contains pyridoxal 5'-phosphate, and has a Km apparent for oxalacetate of 0.55 m M and exhibits positive co-operativity with l -aspartate with an S0.5 of 2.53 m M and a Hill coefficient of 1.57. In vivo, activity levels were affected by the carbon and nitrogen sources and by the change in the dark-light conditions. All these responses are interpreted in terms of a possible physiological regulation of AAT activity to keep the intracellular pools of glutamate and aspartate within margins compatible with environmental fluctuations.  相似文献   

15.
The glutamine synthetase of Suaeda maritima. In vivo and in vitro action of NaCl Glutamine synthetase (GS; EC 6.3.1.2) was isolated and characterized from roots and aerial parts of the halophyte Suaeda maritima (L.) Dum. var. macrocarpa Moq. Km values of GS were identical in both types of organ and unchanged by the salinity in the medium. Addition of NaCl in the culturing solution increased the specific activity of the enzyme especially in the aerial parts, where GS is more abundant. This increase was all the more pronounced if the plant-salt contact period was extended (between 21 and 45 days). In vitro the addition of 0 to 500 m M of salt did not affect the activity of GS at satured substrate concentrations. At low glutamate concentrations in combination with 300 m M NaCl or more, a slight competitive inhibition was observed, never over 18%. – The remarkable insensibility of GS to salinity in vitro and the stimulating effect of NaCl in vivo on the synthesis of the leaf enzyme indicates that GS plays a fundamental part in the assimilation of NH4+ in the halophyte Suaeda maritima var. macrocarpa.  相似文献   

16.
Xanthine dehydrogenase (XDH, EC 1.2.1.37) of Chlamydomonas reinhardtii (Sager) 6145c wild strain has been isolated and characterized for the first time in a unicellular green alga. The enzyme has an Mr of 330 kDa, and FAD, molybdenum and iron are cofactors required for its activity as deduced from results obtained using specific inhibitors, 59Fe-labelling experiments, activity protection by FAD, physiological responses in vivo to iron and molybdenum deficiencies in the culture medium and work with mutants lacking molybdenum cofactor. Xanthine dehydrogenase exhibited Mi-chaelian kinetics typical for a bisubstrate enzyme with apparent Km values for NAD +, hypoxanthine and xanthine of 35, 160 and 70 μ M , respectively. Under phototrophic conditions enzyme activity was repressed by ammonium, but xanthine was not required for the enzyme to be induced, since high levels of enzyme activity were found in cells grown on ammonium and transferred to either N-frec media or media containing either of the nitrogen sources adenine, urea, urate, xanthine, hypoxanthine and guanine.  相似文献   

17.
Abstract NADP+-dependent glutamate dehydrogenase (GDH; EC 1.4.1.4) was purified using acetone precipitation, heat, DEAE-cellulose and dye-ligand Ramazol Red column chromatography. The M r of the native enzyme was estimated to be 380 000 (± 10 000) by polyacrylamide gel electrophoresis. The same technique in the presence of sodium dodecyl sulphate (SDS) gave one subunit band with an M r of 63 400 (±4000). Thus the enzyme has a hexameric structure. The enzyme has a pH optimum of 8.5 and has K m apparent values of 1.6 mM, 0.015 mM and 10.2 mM for α-ketoglutarate, N NADPH and L -glutamate, respectively. Michaelis-Menten kinetics were not observed when the ammonium concentration was increased. A progressive increase in the ammonium concentration resulted in a progressively increasing K m value. The enzyme was highly specific for all substrates and markedly insensitive to inhibitors.  相似文献   

18.
A split root system for nitrogen uptake, in which one part of the root system was exposed to nitrogen-free nutrient and the other to circulated buffered ammonium, was used to investigate the effects of ammonium per se on the enzyme pathway for its assimilation in nodules and roots of leguminous plants. Plants of Trifolium repens L. cv. Grasslands Huia grown in the system showed similar growth and similar free amino acid content in the NH+4-fed roots and in nodulated plants. Studies of ammonium assimilation using [13N]-NH+4, applied to Glycine max [L.] Merr. cv. Amsoy plants, showed the label to be assimilated into amino acids in the NH+4-fed roots and to be transported to the tops before subsequently appearing in the minus-N side of the split root system. Analysis of the xylem sap showed [13N]-asparagine to be the principal labelled amino acid component. In these plants, levels of both allantoate and the nodule-specific isoenzyme aspartate aminotransferase-P2 were at least 10 times higher in the NH+4-fed roots than in the minus-N side of the split root system. These studies strongly suggest that a nodule-type of ammonium assimilation was occurring in the NH+4-fed side of the split root, and that this part of the root was transporting assimilatory products to the tops of the plants in a fashion analogous to that of a nitrogen-fixing nodule. These data implicate the involvement of NH+4 in the induction of its own assimilatory pathway.  相似文献   

19.
Nitrogen represents a critical nutrient in raised bogs. In Sphagna , dominating this habitat, the prevalent storage amino acid asparagine is catabolized predominantly by the enzyme L-asparaginase (EC 3.5.1.1). L-asparaginase activity has been detected in each of 10 Sphagnum species investigated. In Sphagnum fallax Klinggr. (Klinggr. clone 1) cultivated under axenie conditions in continuous feed bioreactors, the enzyme displayed a light dependent increase in activity. We separated two isoforms, designated L-asparaginase 1 and 2, characterized by their different elution patterns from an anion-exchange column. In stem segments only L-asparaginase 2 could be detected, whereas in capitulae L-asparaginase 1 represented the dominating isoform. Purified chloroplasts displayed no L-asparaginase activity. Almost the entire activity was located in the cytosohc fraction. L-asparaginase 1 and 2 have been purified 82-fold and 188-fold, respectively, by ion-exchange, size-exclusion and hydrophobic interaction chrornatography. Identical pH optima (8.2) and molecular weights (126 000) were determined. The Km values for asparagine (7.4 m M for L-asparaginase 1 and 6.2 m M for L-asparaginase 2) were in the range of those described for higher plants. On the other hand Sphagnum L-asparaginase is comprised of four subunits as are the L-asparaginases of microorganisms. So, the characteristics of the bryophyte enzyme appear to be intermediate between those from higher plants and those from microorganisms.  相似文献   

20.
γ-Glutamyl-transpeptidase activity (EC 2.3.2.2) was found in ammonium sulfate precipitates of extracts from cultured cells of Nicotiana tabacum L. var. Samsun. Specific activity up to 3.2 nmol (mg protein)−1 min−1 was achieved, using the artificial substrate γ-glutamyl- p -nitroanilide (Km 0.6 m M ) instead of glutathione. Optimal enzyme activity was obtained at pH 8.0–8.5 and 45°C. The enzyme reaction was inhibited competitively by γ-glutamyl analogs (6-diazo-5-oxo-L-norleucine: Ki 0.76 μ M ; L-azaserine: Ki 0.23 m M ) or the inorganic ion m -periodate (Ki 0.43 m M ). Cell fractionation and in vivo experiments revealed that 77% of the γ-glutamyl-transpeptidase activity is localized in the soluble cytoplasmic fraction, while 20–23% of the enzyme is found on the outer surface of the plasmalemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号