共查询到20条相似文献,搜索用时 0 毫秒
1.
Franchesca D. Houghton Jeremy G. Thompson Christopher J. Kennedy Henry J. Leese 《Molecular reproduction and development》1996,44(4):476-485
Oxygen consumption of preimplantation and early postimplantation mouse embryos has been measured using a novel noninvasive ultramicrofluorescence technique, based on an oil-soluble, nontoxic quaternary benzoid compound pyrene, whose fluorescence is quenched in the presence of oxygen. Pyruvate and glucose consumption, lactate production, and glycogen formation from glucose were also measured. Preimplantation mouse embryos of the strain CBA/Ca × C57BL/6 were cultured in groups of 10–30 in 2 μl of modified M2 medium containing 1 mmol l−1 glucose, 0 mmol l−1 lactate, and 0.33 mmol l−1 pyruvate, for between 4–6 hr. Day 6.5 and 7.5 embryos were cultured singly in 40 μl M2 medium for between 2–3 hr. Oxygen consumption was detected at all stages of development, including, for the first time, in the early postimplantation embryo. Consumption remained relatively constant from zygote to morula stages before increasing in the blastocyst and day 6.5–7.5 stages. When expressed as QO2 (μl/mg dry weight/hr), oxygen consumption was relatively constant from the one-cell to morula stages before increasing sharply at the blastocyst stage and declining to preblastocyst levels on days 6.5 and 7.5. Pyruvate was consumed during preimplantation stages, with glucose uptake undetectable until the blastocyst stage. Glucose was the main substrate consumed by the 6.5 and 7.5 day embryo. The proportions of glucose accounted for by lactate appearance were 81%, 86%, and 119% at blastocyst, day 6.5, and day 7.5 stages, respectively. The equivalent figures for glucose incorporated into glycogen were 10.36%, 0.21%, and 0.19%, respectively. The data are consistent with a switch from a metabolism dependent on aerobic respiration during early preimplantation stages to one dependent on both oxidative phosphorylation and aerobic glycolysis at the blastocyst stage, a pattern which is maintained on days 6.5 and 7.5. Our technique for measuring oxygen consumption may have diagnostic potential for selecting viable embryos for transfer following assisted conception techniques in man and domestic animals. © 1996 Wiley-Liss, Inc. 相似文献
2.
Tabernero A Granda B Medina A Sánchez-Abarca LI Lavado E Medina JM 《Journal of neurochemistry》2002,81(4):881-891
It is well known that the presence of albumin within the brain and the CSF is developmentally regulated. However, the physiological relevance of this phenomenon is not well established. We have previously shown that albumin specifically increases the flux of glucose and lactate through the pyruvate dehydrogenase reaction in astrocytes. Here we show that, in neurones, albumin also increases the oxidation of glucose and lactate through the pyruvate dehydrogenase-catalysed reaction, the final purpose of this being the synthesis of glutamate. Thus, in neurones, the presence of albumin strongly increased the synthesis and release of glutamate to the extracellular medium. Our results also suggest that glutamate release caused by albumin is designed to promote neuronal survival. Thus, under culture conditions in which neurones die by apoptosis, the presence of albumin promoted neuronal survival and maintained the differentiation programme of these cells, as judged by the expression of the axonal protein, GAP-43. The effect of albumin on neuronal survival was counteracted by the presence of DNQX, an antagonist of non-NMDA-glutamate receptors, suggesting that the glutamate synthesized and released due to the presence of albumin is responsible for neuronal survival. In addition, the effect of albumin seemed to depend on the activity of the NGF receptor, TrkA, suggesting that the glutamate synthesized and released due to the presence of albumin promotes neuronal survival through the activity of TrkA. 相似文献
3.
We have previously reported that intralobular salivary duct cells contain an amiloride-sensitive Na+ conductance (probably located in the apical membranes). Since the amiloride-sensitive Na+ conductances in other tight epithelia have been reported to be controlled by extracellular (luminal) Na+, we decided to use whole-cell patch clamp techniques to investigate whether the Na+ conductance in salivary duct cells is also regulated by extracellular Na+. Using Na+-free pipette solutions, we observed that the whole-cell Na+ conductance increased when the extracellular Na+ was increased, whereas the whole-cell Na+ permeability, as defined in the Goldman equation, decreased. The dependency of the whole-cell Na+ conductance on extracellular Na+ could be described by the Michaelis-Menten equation with a K
m
of 47.3 mmol/1 and a maximum conductance (G
max) of 2.18 nS. To investigate whether this saturation of the Na+ conductance with increasing extracellular Na+ was due to a reduction in channel activity or to saturation of the single-channel current, we used fluctuation analysis of
the noise generated during the onset of blockade of the Na+ current with 200 μmol/l 6-chloro-3,5-diaminopyrazine-2-carboxamide. Using this technique, we estimated the single channel
conductance to be 4 pS when the channel was bathed symmetrically in 150 mmol/l Na+ solutions. We found that Na+ channel activity, defined as the open probability multiplied by the number of available channels, did not alter with increasing
extracellular Na+. On the other hand, the single-channel current saturated with increasing extracellular Na+ and, consequently, whole-cell Na+ permeability declined. In other words, the decline in Na+ permeability in salivary duct cells with increasing extracellular Na+ concentration is due simply to saturation of the single-channel Na+ conductance rather than to inactivation of channel activity.
Received: 27 July 1995/Revised: 7 December 1995 相似文献
4.
Curtis V. Givan 《Phytochemistry》1974,13(9):1741-1745
The role of ADP in controlling glycolysis has been examined in a soluble extract of germinating pea seeds. A shortage of ADP appears to retard glycolysis principally by restricting the conversion of phosphopyruvate to pyruvate rather than by restricting formation of phosphoglycerate. Upon addition of ADP to the extract there is an immediate decrease in the concentration of phosphopyruvate accompanied by an increase in pyruvate. Apparently the pyruvate-kinase step shows the most marked response to fluctuations in ADP availability. The glycolytic response to ADP depends on the concentration of ATP magnesium ions. The relation of magnesium-ion availability to adenine-nucleotide control of glycolysis is discussed. 相似文献
5.
6.
Mironova E Peti-Peterdi J Bugaj V Stockand JD 《The Journal of biological chemistry》2011,286(2):1054-1060
We tested whether ATP release through Connexin 30 (Cx30) is part of a local purinergic regulatory system intrinsic to the aldosterone-sensitive distal nephron (ASDN) important for proper control of sodium excretion; if changes in sodium intake influence ATP release via Cx30; and if this allows a normal ENaC response to changes in systemic sodium levels. In addition, we define the consequences of disrupting ATP regulation of ENaC in Cx30(-/-) mice. Urinary ATP levels in wild-type mice increase with sodium intake, being lower and less dependent on sodium intake in Cx30(-/-) mice. Loss of inhibitory ATP regulation causes ENaC activity to be greater in Cx30(-/-) versus wild-type mice, particularly with high sodium intake. This results from compromised ATP release rather than end-organ resistance: ENaC in Cx30(-/-) mice responds to exogenous ATP. Thus, loss of paracrine ATP feedback regulation of ENaC in Cx30(-/-) mice disrupts normal responses to changes in sodium intake. Consequently, ENaC is hyperactive in Cx30(-/-) mice lowering sodium excretion particularly during increases in sodium intake. Clamping mineralocorticoids high in Cx30(-/-) mice fed a high sodium diet causes a marked decline in renal sodium excretion. This is not the case in wild-type mice, which are capable of undergoing aldosterone-escape. This loss of the ability of ENaC to respond to changes in sodium levels contributes to salt-sensitive hypertension in Cx30(-/-) mice. 相似文献
7.
Yasunori Yokota Kohji Hanasaki Takashi Ono Hitoshi Nakazato Tatsuo Kobayashi Hitoshi Arita 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》1999,1438(2):213-222
Endotoxic shock is a systemic inflammatory process, involving a variety of proinflammatory mediators. Two types of secretory phospholipase A2 (sPLA2) have been implicated in this process. Group IB sPLA2 (PLA2-IB) binds to the PLA2 receptor (PLA2R), and PLA2R-deficient mice exhibit resistance to endotoxin-induced lethality with reduced plasma levels of proinflammatory cytokines, such as TNF-α. Group IIA sPLA2 (PLA2-IIA) is found in many tissues and cell types, and local and systemic levels are elevated under numerous inflammatory conditions including sepsis. In this study, we investigated the effect of a specific sPLA2 inhibitor, indoxam, on murine endotoxic shock. Indoxam suppressed the elevation of plasma TNF-α with a similar potency in PLA2-IIA-expressing and PLA2-IIA-deficient mice after LPS challenge. In PLA2-IIA-deficient mice, indoxam also suppressed the elevation of plasma IL-1β, IL-6 and NO, and prolonged survival after LPS challenge. Indoxam was found to block the PLA2-IB binding to murine PLA2R with a high potency (Ki=30 nM). The inhibitory effects of indoxam on the LPS-induced elevation of plasma TNF-α levels could not be observed in mice deficient in PLA2R. These findings suggest that indoxam blocks the production of proinflammatory cytokines during endotoxemia through PLA2-IIA-independent mechanisms, possibly via blockade of the PLA2R function. 相似文献
8.
Vince Pozsgay Cornelis P.J. Glaudemans John B. Robbins Rachel Schneerson 《Carbohydrate research》1983,244(2):259-273
O-(2,4-Di-O-chloroacetyl-α-l-rhamnopyranosyl)-(1 → 2)-O-(3,4,6-tri-O-benzoyl-α-d-galactopyranosyl)-(1 → 3)-O-(2-acetamido-4,6-di-O-acetyl-2-deoxy-α-d-glycopyranosyl)-(1 → 3)-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (1) was synthesized in a stepwise manner, using the following monosaccharide units: 2-(trimethylsilyl)ethyl 2,4-di-O-benzoyl-α-l-rhamnopyranoside, 2-azido-4,6-O-benzylidene-3-O-chloroacetyl-2-deoxy-β-d-glycopyranosyl chloride, methyl 3,4,6-tri-O-benzoyl-2-O-(4-methoxybenzyl)-1-thio-β-d-galactopyranoside, and 2,4-di-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranosyl chloride. Compound 1 corresponds to a complete tetrasaccharide repeating unit of the O-specific polysaccharide of the lipopolysaccharide of Shigella dysenteriae type 1. 相似文献
9.
W.H Hendriks S.M Rutherfurd K.J Rutherfurd 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2001,129(3):211-216
There is conflicting evidence in the literature on the utilization of cysteine and methionine as precursors to the urinary sulfur-containing amino acid felinine in cats. Three entire domestic short-haired male cats, housed individually in metabolism cages, were injected intraperitoneally with either [35S]-sulfate, [35S]-cysteine, or [35S]-methionine. Daily urine samples were collected quantitatively for up to 9 days after injection. Each cat was injected once with each compound after observing an appropriate interval for [35S] to be depleted between injections. All the urine samples were analysed for felinine content and total radioactivity. Felinine was isolated from each urine sample and analysed for radioactivity. No radioactivity was found in felinine from cats injected with [35S]-sulfate. The mean (±S.E.M.) cumulative recovery of radioactivity in the urine of the [35S]-sulfate injected cats was 90.6±6.1% after 4 days. The mean (±S.E.M.) cumulative incorporation rate of radioactivity into felinine by the cats receiving the [35S]-cysteine and [35S]-methionine were 11.6±1.6 and 8.6±0.6%, respectively, after 9 days. The mean (±S.E.M.) cumulative recoveries of radioactivity in the urine were 58.1±3.7 and 36.0±8.0%, respectively. Cysteine and methionine, but not sulfate, are precursors to felinine, with cysteine being a more quantitatively important precursor compared to methionine. 相似文献
10.
The present experiments were designed to examine the function of Na/K pumps from Dahl salt-sensitive (S) and salt-resistant (R) rats. Previous reports have suggested that there is a difference in primary sequence in the α1 subunit, the major Na/K pump isoform in the kidney. This sequence difference might contribute to differences in NaCl excretion in these two strains which in turn could influence the systemic blood pressure. Using ``back-door' phosphorylation of pumps isolated from basolateral membranes of kidney cortex, we found no differences between S and R strains. We also examined the Na/K pumps from cultured inner medullary collecting duct (IMCD) cells. This approach takes advantage of the fact that monolayers cultured from S rats transport about twice as much Na+ as monolayers cultured from R rats. In cells whose apical membrane was made permeable with amphotericin B, comparison of the affinities for ouabain, Na+, and K+, respectively, showed only small or no differences between S and R monolayers. Ouabain binding showed no difference in the number of Na/K pumps on the basolateral membrane of cultured cells, despite a 2-fold difference in Na+ transport rates. The analysis of the steady-state Na+ transport indicates that Na/K pumps in IMCD monolayers from S rats operate at a higher fraction of their maximum capacity than do pumps in monolayers from R rats. The results, taken together, suggest that the major reason for the higher rate of Na+ transport in S monolayers is because of a primary increase in the conductive permeability of the apical membrane to Na+. They suggest that the epithelial Na+ channel is intrinsically different or differently regulated in S and R rats. Received: 6 May 1996/Revised: 16 October 1996 相似文献
11.
John L. Woodard Andrew C. Huntsman Pratiq A. Patel Hee-Byung Chai Ragu Kanagasabai Soumendrakrishna Karmahapatra Alexandria N. Young Yulin Ren Malcolm S. Cole Denisse Herrera Jack C. Yalowich A. Douglas Kinghorn Joanna E. Burdette James R. Fuchs 《Bioorganic & medicinal chemistry》2018,26(9):2354-2364
A series of arylnaphthalene lignan lactones based on the structure of the phyllanthusmins, a class of potent natural products possessing diphyllin as the aglycone, has been synthesized and screened for activity against multiple cancer cell lines. SAR exploration was performed on both the carbohydrate and lactone moieties of this structural class. These studies have revealed the importance of functionalization of the carbohydrate hydroxy groups with both acetylated and methylated analogues showing increased potency relative to those with unsubstituted sugar moieties. In addition, the requirement for the presence and position of the C-ring lactone has been demonstrated through reduction and selective re-oxidation of the lactone ring. The most potent compound in this study displayed an IC50 value of 18?nM in an HT-29 assay with several others ranging from 50 to 200?nM. In an effort to elucidate their potential mechanism(s) of action, the DNA topoisomerase IIa inhibitory activity of the most potent compounds was examined based on previous reports of structurally similar compounds, but does not appear to contribute significantly to their antiproliferative effects. 相似文献
12.
13.
The statistical relationships among the glycolytic intermediates (GI)) of the Embden-Meyerhof pathway, adenine nucleotides (ANs) and various hematological measures were estimated for 34 sickle cell anemia patients. Heterogeneity in linear and quadratic regressions of hemoglobin and hematocrit, both singly and jointly, on the GI and AN variables implied 1) that any single formula to standardize optical density measures of the GIs and ANs on a per gram hemoglobin or per liter cell water basis would not uniformly remove hemoglobin and hematocrit effects: 2) that ignoring significant hematological effects could bias the estimates of correlation among GIs and ANs; and 3) that hemoglobin and hematocrit measures do not reflect the same source of variability. The correlations among the GIs and ANs, after adjustment for hematological variability, were analyzed by path analysis to determine which of five proposed path models for cause and effect relationships were compatible with the data. AMP had a greater influence on ADP (coefficient of determination (CD) = 23%) than all the GIs together, while G6P and ADP influenced ATP variability the most (CD = 33% and 12%). The contributions of unknown factors to ADP and ATP variability were large for all models (CD = 56--77%) possibly due to stress of sickle cell disease. The path model with AMP and the four GIs (G6P, F6P, FDP, DHAP) influencing ADP variation, and the same GIs and ADP influencing ATP was the model most compatible with the data. 相似文献
14.
15.
Mosca E Barcella M Alfieri R Bevilacqua A Canti G Milanesi L 《Biotechnology advances》2012,30(1):131-141
Cancer has been proposed as an example of systems biology disease or network disease. Accordingly, tumor cells differ from their normal counterparts more in terms of intracellular network dynamics than single markers. Here we shall focus on a recently recognized hallmark of cancer, the deregulation of cellular energetics. The constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been confirmed as an essential step toward cell transformation. We will consider how the effects of Akt activation are connected with cell metabolism; more precisely, we will review existing metabolic models and discuss the current knowledge available to construct a kinetic model of the most relevant metabolic processes regulated by the PI3K/Akt pathway. The model will enable a systems biology approach to predict the metabolic targets that may inhibit cell growth under hyper activation of Akt. 相似文献
16.
We studied the effect of Na(+) extracellular on Ca(2+) mobilization from intracellular store evoked by carbachol in Trypanosoma cruzi. We report that slow component of Ca(2+) signaling evoked by agonist is dependent on extracellular Na(+) but not on InsP(3) increase. Moreover, this Ca(2+) signaling progressively increased when pH of the medium changed from 7.0 to 7.8. In addition, we found that it was regulated by PKC. The agonist was also able to induce the alkalinization of the acidic compartment, and both Ca(2+) signaling and alkalinization were inhibited by the EIPA-inhibitor of the Na(+)/H(+) exchanger. These results demonstrated the alkalinization of acidic vacuoles and PKC are involved in the triggering of the epimastigote Ca(2+) signaling. 相似文献
17.
Chao Zhang Shao-Hua Xu Bai-Ling Ma Wei-wei Wang Bo-Yang Yu Jian Zhang 《Bioorganic & medicinal chemistry letters》2017,27(11):2575-2578
Microbial transformation of ursolic acid (1) by Bacillus megaterium CGMCC 1.1741 was investigated and yielded five metabolites identified as 3-oxo-urs-12-en-28-oic acid (2); 1β,11α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3); 1β-hydroxy-3-oxo-urs-12-en-28, 13-lactoe (4); 1β,3β, 11α-trihydroxyurs-12-en-28-oic acid (5) and 1β,11α-dihydroxy-3-oxo-urs-12-en-28-O-β-d-glucopyranoside (6). Metabolites 3, 4, 5 and 6 were new natural products. Their nitric oxide (NO) production inhibitory activity was assessed in lipopolysaccharide (LPS) – stimulated RAW 264.7 cells. Compounds 3 and 4 exhibited significant activities with the IC50 values of 1.243 and 1.711 μM, respectively. A primary structure-activity relationship was also discussed. 相似文献
18.
Essam H. Ibrahim Ramadan Taha Hamed A. Ghramh Mona Kilany 《Saudi Journal of Biological Sciences》2019,26(7):1676-1681
One of the mosquito-borne zoonotic diseases is the Rift Valley fever virus (RVFV). Currently, there is no completely licensed vaccine that can be used to vaccinate animals or humans outside endemic areas. The aim of this work was to use the RVFV glycoprotein (Gn) and the subunit B of cholera toxin (CTB) at gene level and build up fused recombinant vaccine. The gene of CTB was joined to the gene Gn to work as an adjuvant in the resulting fusion protein. The designed merged genes (CTB-Gn) was tested for restriction sites, open reading frames, expected fusion protein tertiary structure and antigenicity using computer software. The insert sequence was submitted to the BioProject (GenBank). The insert was subcloned into the pQE-31 expression plasmid. The target recombinant protein (rCTB-Gn) was expressed in M15 bacteria, purified and identified by protein gel electrophoresis. The insert got the accession No: PRJNA386723. Analysis of the designed rCTB-Gn protein revealed that it had the right 3D structure, immunogenic and at the correct molecular weight. The presence of the CTB in the proposed vaccine will augment its immunogenicity. Doses and protection levels of the vaccine need to be manipulated. 相似文献
19.
The current study was aimed to investigate the effect of resveratrol on apoptosis inhibition in chondrocytes in ACLT plus Mmx rat model. TUNEL assay revealed a markedly higher level of apoptotic chondrocytes in the cartilage of untreated ACLT plus Mmx rats. The percentage of apoptotic chondrocytes was found to be 29.5 and 40.75%, respectively at 21 and 45 days. The percentage of apoptotic chondrocytes at 21 and 45 days in resveratrol (5 mg/kg) treated ACLT plus Mmx rats was found to be 13% and 2%, respectively. Real-time PCR analysis revealed that treatment of the ACLT plus Mmx rats with resveratrol for 45 days caused a significant increase in the expression of miR-18a compared to that in untreated rats. Flow cytometry and BrdUrd incorporation assay revealed that the proportion of chondrocytes in the S phase was increased to 51.4% in resveratrol treatment group compared to 25.3% in the untreated ACLT plus Mmx rats. Western blot analysis showed that treatment of the ACLT plus Mmx rats with resveratrol decreased the expression of ATM protein kinase and GFP protein without any effect on the expression of GFP-?-tubulin in chondrocytes. In addition, resveratrol treatment also led to reduction in the activity of luciferase in the chondrocytes of ACLT plus Mmx rats. Resveratrol treatment of the ACLT plus Mmx rats decreases the expression level of ATM protein and checkpoint kinase 2 (CHK2) phosphorylation in chondrocytes. H2AX and 53BP1 phosphorylation was decreased in ACLT plus Mmx rats on treatment with resveratrol for 45 days. Immunofluorescence results revealed a markedly lower level of H2AX and 53BP1 nuclear foci in the chondrocytes of ACLT plus Mmx rats treated with resveratrol. Thus resveratrol treatment of the ACLT plus Mmx rats inhibits chondrocyte apoptosis and increases proportion of cells in the S phase of cell cycle which may be through the increase in expression of miR18a. A significant relation appears between resveratrol and miR-18a expression in the chondrocytes. 相似文献
20.
Differential desensitization of Ca2+ mobilization and vasoconstriction by ET(A) receptors in the gerbil spiral modiolar artery 总被引:2,自引:0,他引:2
Endothelins are known to be among the most potent endogenous vasoconstrictors. Vasoconstriction of the spiral modiolar artery,
which supplies the cochlea, may be implicated in hearing loss and tinnitus. The purpose of the present study was to determine
whether the spiral modiolar artery responds to endothelin, whether a change in the cytosolic Ca2+ concentration ([Ca2+]i) mediates the response and which endothelin receptors are present. The vascular diameter and [Ca2+]i were measured simultaneously by videomicroscopy and microfluorometry in the isolated spiral modiolar artery from the gerbil.
ET-1 induced a transient [Ca2+]i increase and a strong and long-lasting vasoconstriction. The transient [Ca2+]i increase underwent rapid desensitization, was independent of extracellular Ca2+ and inhibited by the IP3-receptor blocker (75 μm) 2-aminoethoxydiphenyl borate (2-APB) and by depletion of Ca2+ stores with 10−6
m thapsigargin. In contrast, the vasoconstriction displayed no comparable desensitization. The initial vasoconstriction was
independent of extracellular Ca2+ but maintenance of the constriction depended on the presence of extracellular Ca2+. The half-maximal concentration values (EC
50) for the agonists ET-1, ET-3 and sarafotoxin S6c were 0.8 nm, >10 nm and >100 nm, respectively. Affinity constants for the antagonists BQ-123 and BQ-788 were 24 nm and 77 nm, respectively. These observations demonstrate that ET-1 mediates a vasoconstriction of the gerbil spiral modiolar artery
via ETA receptors and an IP3 receptor-mediated release of Ca2+ from thapsigargin-sensitive Ca2+ stores. The marked difference in desensitization between Ca2+ mobilization and vasoconstriction suggests that Ca2+ mobilization is not solely responsible for the vasoconstriction and that other signaling mechanisms must be present.
Received: 4 January 2001/Revised: 23 April 2001 相似文献