首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Background. VacA is an important pathogenetic factor produced by Helicobacter pylori. VacA has often been detected in supernatants of liquid cultures or lysates of whole bacterial cells. However, no studies have ever tried to assay VacA produced in the human stomach. We applied a very sensitive and simple method, bead‐ELISA, to detect VacA in gastric juice. Materials and Methods. Forty‐eight H. pylori‐positive patients (16 nonulcer dyspepsia, 16 gastric ulcer, and 16 duodenal ulcer) and four H. pylori‐negative nonulcer dyspepsia patients had endoscopy performed and gastric juice were aspirated. Polystyrene beads coated with the antibody to VacA, were used in this bead‐ELISA method. The nucleotide sequences of vacA in the signal and middle regions were investigated. Results. Of the 48 samples that were positive for H. pylori, 21 [43.8%] were found to be VacA positive in gastric juice. The average and maximum concentrations of detected VacA in gastric juice were 143.2 ± 216.5 and 840 pg/ml, respectively. The average density of VacA from gastric ulcer patients (227.5 ± 276.7 pg/ml) was higher than that found in nonulcer dyspepsia (51.8 ± 39.8 pg/ml) and duodenal ulcer (49.2 ± 21.5 pg/ml) patients. There was no relationship between VacA in gastric juice and vacA genotype. Conclusions. VacA in gastric juice could be directly detected by bead‐ELISA. In this study, the diversity of disease outcome was associated with not the quality but the quantity of VacA. Therefore, not only the quality but also the quantity of VacA is important etiological factors in the pathogenesis of mucosal damage.  相似文献   

2.
The vacuolating cytotoxin of Helicobacter pylori   总被引:22,自引:1,他引:21  
Helicobacter pylori, the causative agent of chronic superficial gastritis and duodenal ulcer disease in humans, produces a unique cytotoxin (VacA) that induces cytoplasmic vacuolation in eukaryotic cells. The structural organization and processing of the vacuolating cytotoxin are characteristic of a family of proteins exemplified by Neisseria gonorrhoeae IgA protease. Although only 50% of H. pylori isolates produce detectable cytotoxin activity in vitro, vacA homologues are present in virtually all isolates. Several families of vacA alleles have been identified, and there is a strong correlation between presence of specific vacA genotypes, cytotoxin activity, and peptic ulceration. Experiments in a mouse model of H. pylori-induced gastric damage indicate that the cytotoxin plays an important role in inducing gastric epithelial necrosis.  相似文献   

3.
《Autophagy》2013,9(3):370-379
Host cell responses to Helicobacter pylori infection are complex and incompletely understood. Here, we report that autophagy is induced within human-derived gastric epithelial cells (AGS) cells in response to H. pylori infection. These autophagosomes were distinct and different from the large vacuoles induced during H. pylori infection. Autophagosomes were detected by transmission electron microscopy, conversion of LC3-I to LC3-II, GFP-LC3 recruitment to autophagosomes, and depended on Atg5 and Atg12. The induction of autophagy depended on the vacuolating cytotoxin (VacA) and, moreover, VacA was sufficient to induce autophagosome formation. The channel forming activity of VacA was necessary for inducing autophagy. Intracellular VacA partially co-localized with GFP-LC3, indicating that the toxin associates with autophagosomes. The inhibition of autophagy increased the stability of intracellular VacA, which in turn resulted in enhanced toxin-mediated cellular vacuolation. These findings suggest that the induction of autophagy by VacA may represent a host mechanism to limit toxin-induced cellular damage.  相似文献   

4.
《Autophagy》2013,9(1):138-143
Helicobacter pylori is a gram negative pathogen that infects at least half of the world’s population and is associated not only with gastric cancer but also with other diseases such as gastritis and peptic ulcers. Indeed, H. pylori is considered the single most important risk factor for the development of gastric cancer. The vacuolating cytotoxin, VacA, secreted by H. pylori promotes intracellular survival of the bacterium and modulates host immune responses. In a recent study, we reported that VacA induces autophagy. Multilamellar autophagosomes are detected in gastric epithelial cells that are distinct from the large vacuoles formed by VacA. Furthermore, inhibition of autophagy stabilizes VacA and reduces vacuolation in the cells indicating that the toxin is being degraded by autophagy, thus limiting toxin-induced host cell damage. Many of the methods that were used for this study are commonly employed techniques that were adapted for H. pylori infection and VacA intoxication. In this paper, we describe the various methods and specific protocols used for the assessment and monitoring of autophagy during H. pylori infection.  相似文献   

5.
Background. Helicobacter pylori CagA is injected into the host cell and tyrosine‐phosphorylated. We examined tyrosine‐phosphorylation sites of CagA, as well as the function of CagA proteins in vivo and in vitro. Methods. After proteolytic digestion of CagA with lysyl endopeptidase, CagA tyrosine‐phosphorylation sites were determined using quadropolar time‐of‐flight (Q‐TOF) mass spectrometry analysis. Specific anti‐pY CagA polyclonal and anti‐CagA monoclonal antibodies were used to examine gastric mucosal biopsy specimens from H. pylori infected patients. Results. Mass spectrometry identified five crucial tyrosine‐phosphorylation sites of CagA at Tyr893, Tyr912, Tyr965, Tyr999, and Tyr1033 within the five repeated EPIYA sequences of H. pylori (NCTC11637)‐infected AGS cells. CagA protein also had an immuno‐receptor tyrosine‐based activation motif (ITAM)‐like amino acid sequences in the 3′ region of the cagA, E PIY ATI x27EIY ATI , which closely resembled the ITAM. CagA proteins: (i) were localized to the 1% TritonX‐100 resistant membrane fraction (lipid rafts); (ii) formed a cluster of phosphorylated CagA protein complexes; (iii) associated with tyrosine‐phosphorylated GIT1/Cat1 (G protein‐coupled receptor kinase‐interactor 1/Cool‐associated tyrosine‐phosphorylated 1), substrate molecules of receptor type protein‐tyrosine phosphatase (RPTPζ/β), which is the receptor of VacA; and (iv) were involved in a delay and negative regulation of VacA‐induced signal. Furthermore, immunohistochemical staining of gastric mucosal biopsy specimens provided strong evidence that tyrosine‐phosphorylated CagA is found together with CagA at the luminal surface of gastric foveola in vivo. Conclusion. These findings suggest an important role for CagA containing ITAM‐like sequences in the pathogenesis of H. pylori‐related disease.  相似文献   

6.
Background. The impact of H. pylori infection on gastric mucosal blood flow and NSAID‐induced gastric damage is unclear. Aim. To study the effects of H. pylori infection on gastric mucosal blood flow, both at basal conditions and after NSAID exposure, and its relation with mucosal damage and nitric oxide production. Methods. Gastric mucosal blood flow, nitric oxide production and gastric damage were assessed in time after H. pylori SS1 or E. coli inoculation in mice. Experiments were conducted in basal conditions or after oral exposure to indomethacin (20 mg/kg). Results. H. pylori infected mice exhibited a significant increase in gastric blood flow and gastric nitric oxide production 1 week after infection, but those parameters returned to basal levels by 4 weeks. NSAID challenge elicited a similar reduction in gastric blood flow [25–35%] in H. pylori‐infected and control animals. However, only 1 week H. pylori‐infected mice, which exhibited a significant baseline hyperemia, were able to maintain gastric blood flow values within the normal range after NSAID exposure. NSAID‐induced gastric damage was increased in H. pylori‐infected mice by 4 weeks, but not 1 week after infection. Conclusions. Underlying H. pylori infection aggravates acute NSAID‐induced gastric damage. However, at early phases, gastric hyperemia associated with increased nitric oxide production may exert some protective role.  相似文献   

7.
Helicobacter pylori vacuolating cytotoxin, VacA, induces vacuolation, mitochondrial damage, cytochrome c release, and apoptosis of gastric epithelial cells. To detect gastric proteins that serve as VacA receptors, we used VacA co-immunoprecipitation techniques following biotinylation of the cell surface and identified p250, a receptor-like protein-tyrosine phosphatase beta (RPTP beta) as a VacA-binding protein (Yahiro, K., Niidome, T., Kimura, M., Hatakeyama, T., Aoyagi, H., Kurazono, H., Imagawa, K., Wada, A., Moss, J., and Hirayama, T. (1999) J. Biol. Chem. 274, 36693-36699). VacA causes vacuolation of G401 cells, a human kidney tumor cell line, although they do not express RPTP beta. By co-immunoprecipitation with VacA, we identified p140 as a potential receptor in those cells. p140 purified by chromatography on a peanut agglutinin affinity matrix contained internal amino acid sequences of RGEENTDYVNASFIDGYRQK and AEGILDVFQTVK, which are identical to those in RPTP alpha. The peptide mass fingerprinting of p140 by time of flight-MS analysis also supported this identification. Treatment of G401 cells with RPTP alpha-morpholino antisense oligonucleotide before exposure to toxin inhibited vacuolation. These data suggest that RPTP alpha acts as a receptor for VacA in G401 cells. Thus, two receptor tyrosine phosphatases, RPTP alpha and RPTP beta, serve as VacA receptors.  相似文献   

8.
9.
Background: Helicobacter pylori infection is a major cause of gastritis and gastric carcinoma. Aspirin has anti‐inflammatory and antineoplastic activity. The aim of the present study was to determine the effects of aspirin on H. pylori‐induced gastritis and the development of heterotopic proliferative glands. Methods: H. pylori strain SS1 was inoculated into the stomachs of Mongolian gerbils. Two weeks after inoculation, the animals were fed with the powder diets containing 0 p.p.m. (n = 10), 150 p.p.m. (n = 10), or 500 p.p.m. (n = 10) aspirin. Mongolian gerbils were killed after 36 weeks of infection. Uninfected Mongolian gerbils (n = 10) were used as controls. Histologic changes, epithelial cell proliferation and apoptosis, and prostaglandin E2 (PGE2) levels of gastric tissue were determined. Results: H. pylori infection induced gastric inflammation. Administration of aspirin did not change H. pylori‐induced gastritis, but alleviated H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Administration of aspirin accelerated H. pylori‐associated apoptosis but decreased H. pylori‐associated cell proliferation. In addition, the increased gastric PGE2 levels due to H. pylori infection were suppressed by treatment with aspirin, especially at the dose of 500 p.p.m. Conclusions: Aspirin alleviates H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Moreover, aspirin increases H. pylori‐induced apoptosis. We demonstrated the antineoplastic activities of aspirin in H. pylori‐related gastric carcinogenesis.  相似文献   

10.
Background. It is still a point of controversy whether Helicobacter pylori‐infected patients are more likely to develop mucosal damage while taking NSADIs. Selective cyclooxygenase (COX‐2) inhibitors may be associated with less severe gastric mucosal damage than conventional NSAIDs, but this association is undefined in H. pylori‐induced gastritis. The aim of this study was to evaluate the effects of selective COX‐2 and nonselective NSAIDs on H. pylori‐induced gastritis. Methods. After intragastric administration of indomethacin, NS‐398 or vehicle alone, once daily for 5 days in H. pylori‐infected and uninfected Mongolian gerbils, we evaluated gastric mucosal damage, inflammatory cell infiltration and prostaglandin E2 (PGE2) concentration. We investigated whether H. pylori infection induced the COX‐2 expression. Results. In H. pylori‐uninfected groups, the indomethacin‐treated group showed the highest mucosal damage score and the lowest PGE2 concentration. There was no difference in mucosal damage scores and PGE2 concentration between NS‐398 and vehicle‐alone treated group. In H. pylori‐infected groups, there was no difference in mucosal damage scores, irrespective of the type of drugs administered. The indomethacin‐treated group showed the lowest PGE2 concentration, similar to that of the NS‐398 and vehicle‐alone treated groups, both without H. pylori infection. Gastric neutrophil and monocyte infiltration scores were higher in H. pylori‐infected groups than in uninfected groups. However, there was no difference in these scores according to the type of drugs administered, within H. pylori‐infected or uninfected groups. COX‐2 protein expression was observed in H. pylori‐infected Mongolian gerbils but not in uninfected ones. Conclusions. Our animal study showed that H. pylori infection induced COX‐2 expression and increased prostaglandin concentration. Administration of NSAIDs decreased the prostaglandin concentration, but did not increase mucosal damage in H. pylori‐induced gastritis. Selective COX‐2 inhibitors, instead of conventional NSIADs, had no beneficial effect on preventing mucosal damage in H. pylori‐induced gastritis.  相似文献   

11.
Background. Helicobacter pylori a primary cause of gastritis and peptic ulcer disease, is associated with increased production of reactive oxygen species within the gastric mucosa. Metallothionein (MT), a low‐molecular‐weight, cysteine‐rich, metal‐binding ligand, has been shown to sequester reactive oxygen species and reduce tissue damage. This study investigates the role of MT in H. pylori‐induced gastritis in mice. Materials and Methods. Control (MT+/+) and MT‐null (MT–/–) mice were inoculated with either 1 × 108H. pylori or H. felis, and were infected for 4, 8 and 16 weeks or 8 weeks, respectively. H. pylori load was determined by culture. Myloperoxidase activity and MT levels were also determined. Results. The stomachs of H. felis‐infected mice were more severely inflamed than those of H. pylori‐infected mice. H. felis‐induced gastritis was more severe (p = .003) in MT–/– than in MT+/+ mice. MT–/– mice also had higher (60%; p < .05) H. pylori loads than MT+/+ mice 4 weeks after infection but not 8 or 16 weeks after infection. Myloperoxidase activity with H. pylori was similar between MT+/+ and MT–/– mice. Thirty‐three per cent greater (p < .05) myloperoxidase activity was observed in MT–/– than in MT+/+ mice infected with H. felis. In MT+/+ mice infected with H. pylori, liver MT was increased by 33 and 39% (p < .05) at 8 and 16 weeks, respectively, whereas gastric MT increased by 46% (p < .05) at 4 weeks and declined to baseline levels at 8 and 16 weeks. Conclusions. Mice lacking MT are more susceptible to H. pylori colonization and gastric inflammation, indicating that MT may be protective against H. pylori‐induced gastritis.  相似文献   

12.
Helicobacter pylori (H pylori) is the main risk factor for gastric cancer (GC). In recent years, many studies have addressed the effects of H pylori itself and of H pylori‐induced chronic inflammation on DNA damage. Unrepaired or inappropriately repaired DNA damage is one possible carcinogenic mechanism. We may conclude that H pylori‐induced DNA damage is one of the carcinogenic mechanisms of GC. In this review, we summarize the interactions between H pylori and DNA damage and the effects of H pylori‐induced DNA damage on GC. Then, focusing on oxidative stress, we introduce the application of antioxidants in GC. At the end of this review, we discuss the outlook for further research on H pylori‐induced DNA damage.  相似文献   

13.
Background: Osteopontin (OPN) is involved in the gastric cancer progression. The study validated whether OPN expressions correlate with Helicobacter pylori‐related chronic gastric inflammation and the precancerous change as intestinal metaplasia (IM). Methods: This study included 105 H. pylori‐infected patients (63 without and 42 with IM) and 29 H. pylori‐negative controls. In each subject, the gastric OPN expression intensity was evaluated by immunohistochemistry, and graded from 0 to 4 for the epithelium, lamina propria, and areas with IM, respectively. For the H. pylori‐infected subjects, the gastric inflammation was assessed by the Updated Sydney System. Forty‐nine patients received follow‐up endoscopy to assess OPN change on gastric mucosa after H. pylori eradication. The in vitro cell‐H. pylori coculture were performed to test the cell origin of OPN. Results: The H. pylori‐infected patients had higher gastric OPN expression than the noninfected controls (p < .001). For the H. pylori‐infected patients, an increased OPN expression correlated with more severe chronic gastric inflammation (p < .001) and the presence of IM (OR: 2.6, 95% CI: 1.15–5.94, p = .02). Within the same gastric bits, lamina propria expressed OPN stronger than epithelium (p < .001), suggesting OPN predominantly originates from inflammatory cells. The in vitro assay confirmed H. pylori stimulate OPN expression in the monocytes, but not in the gastric epithelial cells. After H. pylori eradication, the gastric OPN expression could be decreased only in areas without IM (p < .05). Conclusions: Increased gastric OPN expression by H. pylori infection can correlate with a more severe gastric inflammation and the presence of IM.  相似文献   

14.
15.
Background. To investigate whether Helicobacter pylori infection, but not drugs, affects gastric somatostatin, interleukin‐8 (IL‐8), histological inflammation through eradication therapy, and interactions among these parameters. Methods. Twenty‐eight H. pylori‐positive patients (21 males; mean age 47.0 years) with either gastric ulcer (GU: n = 11) or duodenal ulcer (n = 17) diagnosed endoscopically were treated with dual therapy. Eradication was defined as negative microbiologic tests and 13C‐urea breath test. Levels of antral and gastric juice somatostatin and mucosal IL‐8 were measured by radioimmunoassay and enzyme‐linked immunosorbent assay, respectively. Histology was assessed by the Sydney system. Results. H. pylori was eradicated in 15 patients (10 males, 6 GU) out of 28 (54%). The patients’ backgrounds did not affect the eradication of H. pylori. Successes in eradication significantly increased antral and juice somatostatin contents, and dramatically decreased IL‐8 levels and histological gastritis. In contrast, persistent H. pylori infection did not affect somatostatin and histological gastritis. An inverse correlation was present between changes in somatostatin levels and histological activity. No relationship was observed in changed values between antral somatostatin and IL‐8. Conclusions. These results indicate that eradication of H. pylori, but not the drugs used, induced an increase in somatostatin levels in the antrum and gastric juice, suggesting a close relationship between H. pylori and gastric somatostatin regulation. A close correlation between an increase in gastric somatostatin levels and the normalization of histological activity was present, suggesting that certain peptide‐immune interactions in the gastric mucosa exist in H. pylori infection.  相似文献   

16.
17.
Background. Recently, the acquisition by Helicobacter pylori of resistance to antibiotics has become a serious problem. Therefore, nonantibiotic substances are required to diminish H. pylori‐induced gastric lesions. In the present study, the effects of Cladosiphon fucoidan were examined in terms of H. pylori attachment to porcine gastric mucin in vitro and Helicobacter pylori‐induced gastritis in vivo. Methods. The inhibitory effect of Cladosiphon fucoidan and other polysaccharides on H. pylori attachment to porcine gastric mucin was assayed in vitro with mucin‐coated microtiter plates. The effect of Cladosiphon fucoidan on H. pylori‐induced gastritis was examined in vivo using Mongolian gerbils. H. pylori‐inoculated gerbils were given fucoidan in drinking water. Six weeks after H. pylori‐inoculation, gerbils were sacrificed for macroscopic and microscopic examination of gastric lesions and counting of viable H. pylori in the gastric mucosa. Results. Cladosiphon fucoidan inhibited the H. pylori attachment to porcine gastric mucin at pH 2.0 and 4.0. Two other sulfated polysaccharides, Fucus fucoidan and dextran sulfate sodium, also inhibited the attachment but only at pH 2.0. Inhibitory effects of these three sulfated polysaccharides were not observed at pH 7.2 and nonsulfated polysaccharides, such as mannan and dextran, exerted no influence at any pH. In the in vivo experiment, the H. pylori‐induced gastritis and the prevalence of H. pylori infected animals were markedly reduced by fucoidan in a dose‐dependent manner, at doses of 0.05 and 0.5% in the drinking water. Conclusion. Cladosiphon fucoidan may deserve particular attention as a safe agent that can prevent H. pylori infection and reduce the risk of associated gastric cancer.  相似文献   

18.
Background. Helicobacter pylori infection leads to an increased risk of developing gastric cancer. The mechanism through which this occurs is not known. We aimed to determine the effect of H. pylori and gastritis on levels of DNA damage in gastric epithelial cells. Methods. Epithelial cells were isolated from antral biopsies from 111 patients. DNA damage was determined using single cell gel electrophoresis and the proportion of cells with damage calculated before and 6 weeks after eradication of H. pylori. Cell suspensions generated by sequential digestions of the same biopsies were assayed to determine the effect of cell position within the gastric pit on DNA damage. Results. DNA damage was significantly higher in normal gastric mucosa than in H. pylori gastritis [median (interquartile range) 65% (58.5–75.8), n = 18 and 21% (11.9–29.8), n = 65, respectively, p < .001]. Intermediate levels were found in reactive gastritis [55.5% (41.3–71.7), n = 13] and H. pylori negative chronic gastritis [50.5% (36.3–60.0), n = 15]. DNA damage rose 6 weeks after successful eradication of H. pylori[to 39.5% (26.3–51.0), p = .007] but was still lower than in normal mucosa. Chronic inflammation was the most important histological factor that determined DNA damage. DNA damage fell with increasing digestion times (r = –.92 and –.88 for normal mucosa and H. pylori gastritis, respectively). Conclusions. Lower levels of DNA damage in cells isolated from H. pylori infected gastric biopsies may be a reflection of increased cell turnover in H. pylori gastritis. The investigation of mature gastric epithelial cells for DNA damage is unlikely to elucidate the mechanisms underlying gastric carcinogenesis.  相似文献   

19.
Chronic inflammation induced by Helicobacter pylori infection is a critical factor in the development of peptic ulcer disease and gastric cancer. Central to this inflammation is the initiation of pro‐inflammatory signaling cascades within epithelial cells, in particular those mediated by two sensors of bacterial cell wall components, nucleotide‐binding oligomerization domain‐containing protein 1 (NOD1) and alpha‐protein kinase 1 (ALPK1). H pylori is, however, also highly adept at mitigating inflammation in the host, thereby restricting tissue damage and favoring bacterial persistence. H pylori modulates host immune responses by altering cytokine signaling in epithelial and myeloid cells, which results in increased proliferation of regulatory T cells and downregulation of effector T‐cell responses. H pylori vacuolating cytotoxin A (VacA) has been shown to play an important role in the dampening of immune responses and induction of immune tolerance capable of protecting against asthma. It is also possible to generate protective immune responses by immunization with various H pylori antigens or their epitopes, in combination with an adjuvant, though this for now has only been shown in mouse models. Novel non‐toxic adjuvants, consisting of modified bacterial enterotoxins or nanoparticles, have recently been developed that may not only enhance vaccine efficacy, but also help translate candidate vaccines to the clinic. This review will summarize the main discoveries in the past year regarding host immune responses to H pylori infection, as well as the design of new vaccine approaches against this infection.  相似文献   

20.
Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore‐forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N‐terminal p33 domain and a C‐terminal p55 domain, assembles into water‐soluble oligomers. The structural organization of membrane‐bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane‐bound VacA organizes into hexameric oligomers. Comparison of the two‐dimensional averages of membrane‐bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号