首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During axonal elongation in the developing peripheral nervous system, the temporal and spatial distribution of adhesive molecules in extracellular matrices and on neighboring cell surfaces may provide "choices" of pathways for growth cone migration. The extracellular matrix glycoprotein laminin appears in early embryos and mediates neuronal adhesion and neurite extension in vitro. In this study, we have examined the distribution of laminin at early periods of peripheral nervous system development. The distribution of laminin, demonstrated by immunostaining frozen sections of chick embryos, was compared to the distribution of fibronectin and of early peripheral neurites as revealed with an antibody to a neurofilament-associated protein. Laminin is present in the neural tube basement membrane, in early ganglia, and in developing dorsal and ventral roots, where the laminin staining pattern parallels that of neurofilaments. In early ganglia and nerve roots, laminin immunostaining defines loose "meshworks" rather than basement membranes, which seem to form slightly later in these structures. In contrast, fibronectin is absent in neural tube basement membrane, ganglia, and nerve roots, although it is present along neural crest migratory pathways and in intersomitic spaces. Our observations of laminin distribution are consistent with the possibility that laminin provides an adhesive surface for neurite extension at some stages of early peripheral nervous system development.  相似文献   

2.
Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects.  相似文献   

3.
Differential expression of the laminin A and B chains in chimeric kidneys   总被引:1,自引:0,他引:1  
The expression of laminin in embryonic kidneys growing in ovo is followed with mouse-specific, affinity-purified antibodies against the laminin A and B chains. In mouse kidneys growing on the chicken chorioallantoic membrane, the epithelium and nephrogenic mesenchyme are derived from mouse and the vasculature from chicken chorioallantoic vessels. Hence, with the mouse-specific antibodies, it is possible to analyze the deposition of laminin chains by the nephrogenic tissue, because laminin derived from the chicken vasculature remains unstained. In these chimeras, only the laminin B chain, but not the A chain, is expressed in the undifferentiated nephrogenic mesenchyme. The basement membrane around the ureter bud is labeled by the antibodies against both laminin A and B chains. In the mesenchyme, the laminin A chain appears when the mesenchyme converts into tubules. The results suggest that the laminin A and B chains are synthesized differentially in the embryonic nephrogenic tissue.  相似文献   

4.
Miner JH  Li C 《Developmental biology》2000,217(2):278-289
Laminins are major components of all basement membranes. They are a diverse group of alpha/beta/gamma heterotrimers formed from five alpha, three beta, and three gamma chains. Laminin alpha5 is a widely expressed chain found in many embryonic and adult basement membranes. During embryogenesis, alpha5 has a role in disparate developmental processes, including neural tube closure, digit septation, and placentation. Here, we analyzed kidney development in Lama5 mutant embryos and found a striking defect in glomerulogenesis associated with an abnormal glomerular basement membrane (GBM). This correlates with failure of the developmental switch in laminin alpha chain deposition in which alpha5 replaces alpha1 in the GBM at the capillary loop stage of glomerulogenesis. In the absence of a normal GBM, glomerular epithelial cells were in disarray, and endothelial and mesangial cells were extruded from within the constricting glomerulus, leading to a complete absence of vascularized glomeruli. In addition, a minority of Lama5 mutant mice lacked one or both kidneys, indicating that laminin alpha5 is also important in earlier kidney development. Our results demonstrate a dual role for laminin alpha5 in kidney development, illustrate a novel defect in glomerulogenesis, and indicate a heretofore unappreciated developmental role for the GBM in influencing the behavior of epithelial and endothelial cells.  相似文献   

5.
Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.  相似文献   

6.
We have investigated the distribution of type I collagen, tenascin, and laminin in younger chick embryos than have previously been studied in detail. The initial appearance of type I collagen, but not tenascin and laminin, is exactly correlated with the beginning of neural crest migration, suggesting a role for collagen I in the migration. Light microscopy of whole mounts of 2-day-old chick embryos reveals that type I collagen is expressed in a rostral to caudal gradient; it localizes to the notochord sheath before accumulating around the neural tube and somites. Collagen I and tenascin also associate with central somite cells. Surprisingly, no extracellular matrix can be detected among the early sclerotomal cells, which suggests that little or no cell migration is involved in this epithelial-mesenchymal transformation. Electron microscopy using peroxidase antiperoxidase reveals that tenascin is present in nonstriated, 10 nm wide fibrils and in interstitial bodies, both of which have previously been reported to contain fibronectin. However, collagen I only occurs in the 10 nm fibrils and larger striated fibrils. This is the first ultrastructural study to assign tenascin to fibrils and interstitial bodies and to describe its appearance and disappearance from embryonic basement membranes. The discussion emphasizes the possible importance of type I collagen in neural crest cell migration and compares the ultrastructural associations of the ECM molecules present at this early embryonic stage.  相似文献   

7.
Immunological and histological methods have been applied to the developing rat embryo to study the distribution of hyaluronectin (HN, a glycoprotein with hyaluronic acid-binding properties) previously shown to be present in the nervous system and in desmoplasias. HN was absent in the morula and the blastula and was first detected in the mesenchyme bordering the neural tube and somites on Day 10, i.e., at a time when hyaluronic acid is already widely dispersed in the mesenchyme. At this stage HN appeared to be closely associated with the basement membrane around the epithelial structures (somites, notochord, ectoderm) whereas the intercellular areas of mesenchyme were less strongly strained. The delineation of basement membranes decreased progressively, while the accumulation of HN increased in the cell-free areas of mesenchyme, giving a continuous, diffuse pattern. Differentiation of mesenchyme into vertebral cartilage and gut smooth muscle was accompanied by a progressive disappearance of HN. Even after streptomyces hyaluronidase or chondroitinase digestion the antigen was not unmasked in these tissues. The results are in agreement with the few observations made in the human. They suggest that HN could play a role, in association with fibronectin and glycosaminoglycans (hyaluronic acid), in the physiology of the embryonic extracellular matrix. HN appeared at a later stage in the embryonic nervous tissue; its distribution was extracellular in areas where both cell migration and proliferation occur.  相似文献   

8.
9.
The distribution of basement membrane and extracellular matrix components laminin, fibronectin, type IV collagen and heparan sulphate proteoglycan was examined during posterior neuropore closure and secondary neurulation in the mouse embryo. During posterior neuropore closure, these components were densely deposited in basement membranes of neuroepithelium, blood vessels, gut and notochord; although deposition was sparse in the midline of the regressing primitive streak. During secondary neurulation, mesenchymal cells formed an initial aggregate near the dorsal surface, which canalized and merged with the anterior neuroepithelium. With aggregation, fibronectin and heparan sulphate proteoglycan were first detected at the base of a 3- to 4-layer zone of radially organized cells. With formation of a lumen within the aggregate, laminin and type IV collagen were also deposited in the forming basement membrane. During both posterior neuropore closure and secondary neurulation, fibronectin and heparan sulphate proteoglycan were associated with the most caudal portion of the neuroepithelium, the region where newly formed epithelium merges with the consolidated neuroepithelium. In regions of neural crest migration, the deposition of basement membrane components was altered, lacking laminin and type IV collagen, with increased deposition of fibronectin and heparan sulphate proteoglycan.  相似文献   

10.
Laminins are components of all basement membranes and have well demonstrated roles in diverse developmental processes, from the peri-implantation period onwards. Laminin 1 (alpha1beta1gamma1) is a major laminin found at early stages of embryogenesis in both embryonic and extraembryonic basement membranes. The laminin gamma1 chain has been shown by targeted mutation to be required for endodermal differentiation and formation of basement membranes; Lamc1(-/-) embryos die within a day of implantation. We report the generation of mice lacking laminin alpha1 and laminin beta1, the remaining two laminin 1 chains. Mutagenic insertions in both Lama1 and Lamb1 were obtained in a secretory gene trap screen. Lamb1(-/-) embryos are similar to Lamc1(-/-) embryos in that they lack basement membranes and do not survive beyond embryonic day (E) 5.5. However, in Lama1(-/-) embryos, the embryonic basement membrane forms, the embryonic ectoderm cavitates and the parietal endoderm differentiates, apparently because laminin 10 (alpha5beta1gamma1) partially compensates for the absent laminin 1. However, such compensation did not occur for Reichert's membrane, which was absent, and the embryos died by E7. Overexpression of laminin alpha5 from a transgene improved the phenotype of Lama1(-/-) embryos to the point that they initiated gastrulation, but this overexpression did not rescue Reichert's membrane, and trophoblast cells did not form blood sinuses. These data suggest that both the molecular composition and the integrity of basement membranes are crucial for early developmental events.  相似文献   

11.
Branching epithelial morphogenesis requires interactions between the surrounding mesenchyme and the epithelium, as well as interactions between basement membrane components and the epithelium. Embryonic submandibular gland was used to study the roles of two mesenchymal proteins, epimorphin and tenascin-C, as well as the epithelial protein laminin-1 and one of its integrin receptors on branching morphogenesis. Laminin-1 is a heterotrimer composed of an alpha 1 chain and two smaller chains (beta 1 and gamma 1). Immunofluorescence revealed a transient expression of laminin alpha 1 chain in the epithelial basement membrane during early stages of branching morphogenesis. Other laminin-1 chains and alpha 6, beta 1, and beta 4 integrin subunits seemed to be expressed constitutively. Expression of epimorphin, but not tenascin-C, was seen in the mesenchyme during early developmental stages, but a mAb against epimorphin did not perturb branching morphogenesis of this early epithelium. In contrast, inhibition of branching morphogenesis was seen with a mAb against the carboxy terminus of laminin alpha 1 chain, the E3 domain. An inhibition of branching was also seen with a mAb against the integrin alpha 6 subunit. The antibodies against laminin alpha 1 chain and integrin alpha 6 subunit perturbed development in distinct fashions. Whereas treatment with the anti-E3 resulted in discontinuities of the basement membrane at the tips of the branching epithelium, treatment with the mAb against alpha 6 integrin subunit seemed to leave the basement membrane intact. We suggest that the laminin E3 domain is involved in basement membrane formation, whereas alpha 6 beta 1 integrin binding to laminin-1 may elicit differentiation signals to the epithelial cells.  相似文献   

12.
Immunofluorescence and immunoperoxidase labeling for fibronectin was used to study the early events of cephalic neural crest cell migration in avian embryos. Prior to crest cell appearance, fibronectin was associated with the basement membranes of all tissues. The loose mesenchymal cells were also surrounded by this glycoprotein. The crest cell individualization phase included a transient rounding up and a rapid increase in cell number in a very limited space. Whereas the neural tube basement membrane was not formed dorsally at the site of emergence of crest cells, it was partially fused laterally with the ectoderm basement membrane apparently preventing immediate crest cell emigration. Further increase in cell number occurred concomitantly with their penetration between the two developing basement membranes of the neural tube and the ectoderm. The localization of migrating crest cells is apparently greatly influenced by local interactions between the ectoderm and the neural tube, whose morphogenesis differs considerably at each axial level: at the mesencephalic-rhombencephalic levels, crest cells rapidly reached a cell-free space that was mostly devoid of fibronectin. Further migration occurred laterally in that space while pioneer crest cells became surrounded by fibronectin in their environment. Crest cells progressed as a confluent multicellular layer with an apparent velocity of 70 μm/hr. At the prosencephalic and median rhombencephalic levels, crest cells accumulated between the fibronectin-rich basement membranes of the ectoderm and the neural tube. Pioneer crest cells were arrested at the site of attachment of the ectoderm and the neural tube basement membranes (i.e., optic vesicles and otic placodes). Crest cells resumed their migration when more space became available during the constriction of the optic vesicles and the invagination of the otic placodes.  相似文献   

13.
Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.  相似文献   

14.
神经管闭合缺陷 (NTDs)是一种严重的先天畸形疾病,在新生儿中有千分之一的发病率。神经管融合前后,多种组织参与形态发生运动。神经管一经融合,神经嵴细胞就会向背侧中线方向产生单极突出并向此方向迁移形成神经管的顶部。与此同时,神经管从腹侧开始发生辐射状切入以实现单层化。在此,我们在非洲爪蟾的移植体中机械阻断神经管的闭合以检测其细胞运动及随后的图式形成。结果显示神经管闭合缺陷的移植体不能形成单层化的神经管,并且神经嵴细胞滞留在侧面区域不能向背侧中线迁移,而对神经前体标记基因的检测显示神经管的背腹图式形成并未受到影响。以上结果表明神经管的融合对于辐射状切入和神经嵴细胞向背侧中线方向的迁移过程是必需的,而对于神经管的沿背腹轴方向的图式形成是非必需的。  相似文献   

15.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

16.
Integrin alpha 7 beta 1 is a specific cellular receptor for laminin. In the present work, we studied the distribution pattern of the alpha 7 subunit by immunofluorescence and immunoprecipitation and the role of the integrin by blocking antibodies in early chick embryos. alpha 7 immunoreactivity was first detectable in the neural plate during neural furrow formation (stage HH5, early neurula, Hamburger & Hamilton 1951) and its expression was upregulated in the neural folds during primary neurulation. The alpha 7 expression domain spanned the entire neural tube by stage HH8 (4 somites), and was then downregulated and confined to the neuroepithelial cells in the germinal region near the lumen and the ventrolateral margins of the neural tube in embryos by the onset of stage HH17 (29 somites). Expression of alpha 7 in the neural tube was transient suggesting that alpha 7 functions during neural tube closure and axon guidance and may not be required for neuronal differentiation or for the maintenance of the differentiated cell types. alpha 7 immunoreactivity was strong in the newly formed epithelial somites, although this expression was restricted only to the myotome in the mature somites. The most intense alpha 7 immunoreactivity was detectable in the paired heart primordia and the endoderm apposing the heart primordia in embryos at stage HH8. In the developing heart, alpha 7 immunoreactivity was: (i) intense in the myocardium; (ii) milder in the endocardial cushions of the ventricle; (iii) intense in the sinus venosus; (iv) distinct in the associated blood vessels; and (v) undetectable in the dorsal mesocardium of embryos at stage HH17. Inhibition of function of alpha 7 by blocking antibodies showed that alpha 7 integrin-laminin signaling may play a critical role in tissue organization of the neural plate and neural tube closure, in tissue morphogenesis of the heart tube but not in the directional migration of pre-cardiac cells, and in somite epithelialization but not in segment formation in presomitic mesoderm. In embryos treated with alpha 7 antibody, the formation of median somites in place of a notochord was intriguing and suggested that alpha 7 integrin-laminin signaling may have played a role in segment re-specification in the mesoderm.  相似文献   

17.
18.
Dynamic imaging of mammalian neural tube closure   总被引:1,自引:0,他引:1  
Neurulation, the process of neural tube formation, is a complex morphogenetic event. In the mammalian embryo, an understanding of the dynamic nature of neurulation has been hampered due to its in utero development. Here we use laser point scanning confocal microscopy of a membrane expressed fluorescent protein to visualize the dynamic cell behaviors comprising neural tube closure in the cultured mouse embryo. In particular, we have focused on the final step wherein the neural folds approach one another and seal to form the closed neural tube. Our unexpected findings reveal a mechanism of closure in the midbrain different from the zipper-like process thought to occur more generally. Individual non-neural ectoderm cells on opposing sides of the neural folds undergo a dramatic change in shape to protrude from the epithelial layer and then form intermediate closure points to “button-up” the folds. Cells from the juxtaposed neural folds extend long and short flexible extensions and form bridges across the physical gap of the closing folds. Thus, the combination of live embryo culture with dynamic imaging provides intriguing insight into the cell biological processes that mold embryonic tissues in mammals.  相似文献   

19.
Summary Immunoperoxidase labelling for fibronectin (FN) in chick embryos showed FN-positive basement membranes surrounding the neural crest cell population prior to crest-cell migration. At cranial levels, crest cells migrated laterally into a large cell-free space. Initially they moved as a tongue of cells contacting the FN-positive basement membrane of the ectoderm, but later the crest cell population expanded into space further from the ectoderm, until eventually the entire cranial cell-free space was occupied by mesenchyme cells. This was accompanied by the appearance of FN among the crest cells. At trunk levels, crest cells entered a relatively small space already containing FN-positive extracellular material. At later stages the migration of trunk crest cells broadly matched the distribution of FN. In vitro, chick and quail embryo ectoderm, endoderm, somites, notochord and neural tube synthesized and organized fibrous FN-matrices, as shown by immunofluorescence. Ectoderm and endoderm deposited this matrix only on the substrate face. The FN content of endoderm and neural tube matrices was transient, the immunofluorescence intensity declining after 1–2 days in culture. Some crest cells of cranial and sacral axial levels synthesized FN. Our data suggests that these were the earliest crest cells to migrate from these levels. This ability may be the first expression of mesenchymal differentiation in these crest cells, and in vivo enable them to occupy a large space. Almost all crest cells from cervico-lumbar axial levels were unable to synthesize FN. In vivo, this inability may magnify the response of these crest cells to FN provided by the neighbouring embryonic tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号