首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Decorin (Dcn), a small leucine-rich proteoglycan, is present in the extracellular matrix of the airways and lung tissues, contributes to lung mechanical properties, and its deposition is altered in asthma. The effect of Dcn deficiency on airway parenchymal interdependence was examined during induced bronchoconstriction. Studies were performed in C57Bl/6 mice in which the Dcn gene was disrupted by targeted deletion (Dcn(-/-)) and in wild-type controls (Dcn(+/+)). Mice were mechanically ventilated, and respiratory system impedance was measured during in vivo ventilation at positive end-expiratory pressure (PEEP) = 2 and 10 cmH(2)0, before and after aerosol delivery of methacholine (MCh). Length vs. tension curves in isolated tracheal rings were measured in vitro. Dcn distribution in +/+ mice airways was characterized by immunofluorescence; differences in collagen structure in Dcn(+/+) and Dcn(-/-) mouse lungs was examined by electron microscopy. MCh caused similar increases in airway resistance (Raw) and tissue elastance (H) in Dcn(+/+) and Dcn(-/-) mice. During MCh-induced constriction, increasing PEEP caused a decrease in Raw that was greater in Dcn(-/-) mice and a decrease in H in Dcn(-/-) mice only. Tracheal ring compliance was greater in Dcn (-/-) mice. Imaging studies showed that Dcn was deposited primarily in the airway adventitial layer in Dcn(+/+) mice; in Dcn(-/-) mice, collagen had an irregular appearance, especially in the lung periphery. These results show that lack of Dcn alters the normal interaction between airways and lung parenchyma; in asthma, changes in Dcn could potentially contribute to abnormal airway physiology.  相似文献   

2.
A single-projection X-ray technique showed an increase in functional residual capacity (FRC) in conscious mice in response to aerosolized methacholine (MCh) with little change in airway resistance (Raw) measured using barometric plethysmography (Lai-Fook SJ, Houtz PK, Lai Y-L. J Appl Physiol 104: 521-533, 2008). The increase in FRC presumably prevented airway constriction by offsetting airway contractility. We sought a more direct measure of airway constriction. Anesthetized Balb/c mice were intubated with a 22-G catheter, and tantalum dust was insufflated into the lungs to produce a well-defined bronchogram. After overnight recovery, the conscious mouse was placed in a sealed box, and bronchograms were taken at maximum and minimum points of the box pressure cycle before (control) and after 1-min exposures to 25, 50, and 100 mg/ml MCh aerosol. After overnight recovery, each mouse was studied under both room and body temperature box air conditions to correct for gas compression effects on the control tidal volume (Vt) and to determine Vt and Raw with MCh. Airway diameter (D), FRC, and Vt were measured from the X-ray images. Compared with control, D decreased by 24%, frequency decreased by 35%, FRC increased by 120%, and Raw doubled, to reach limiting values with 100 mg/ml MCh. Vt was unchanged with MCh. The limiting D occurred near zero airway elastic recoil, where the maximal contractility was relatively small. The conscious mouse adapted to MCh by breathing at a higher lung volume and reduced frequency to reach a limit in constriction.  相似文献   

3.
Tissue viscance (Vti), the pressure drop across the lung tissues in phase with flow, increases after induced constriction. To gain information about the possible site of response, we induced increases in Vti with methacholine (MCh) and attempted to correlate these changes with alterations in lung morphology. We measured tracheal (Ptr) and alveolar pressure (PA) in open-chest rabbits during mechanical ventilation [frequency = 1 Hz, tidal volume = 5 ml/kg, positive end-expiratory pressure (PEEP) = 5 cmH2O] under control conditions and after administration of saline or MCh (32 or 128 mg/ml) aerosols. We calculated lung elastance (EL), lung resistance (RL), Vti, and airway resistance (Raw) by fitting the equation of motion to changes in Ptr and PA. The lungs were then frozen in situ with liquid nitrogen (PEEP = 5 cmH2O), excised, and processed using freeze substitution techniques. Airway constriction was assessed by measuring the ratio of the airway lumen (A) to the ideally relaxed area (Ar). Tissue distortion was assessed by measuring the mean linear intercept between alveolar walls (Lm), the standard deviation of Lm (SDLm), and an atelectasis index (ATI) derived by calculating the ratio of tissue to air space using computer image analysis. RL, Vti, and EL were significantly increased after MCh, and Raw was unchanged. A/Ar, Lm, SDLm, and ATI all changed significantly with MCh. Log-normalized change (% of baseline) in Vti significantly correlated with A/Ar (r = -0.693), Lm (r = 0.691), SDLm (r = 0.648), and ATI (r = 0.656). Hence, changes in lung tissue mechanics correlated with changes in morphometric indexes of parenchymal distortion and airway constriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To better address the functional consequences of inflammation on bronchial responsiveness, we studied two groups of BALB/c mice: a nonimmunized control group (n = 8) and a group immunized and challenged with inhaled ovalbumin (n = 8). An alveolar capsule (AC) measured airway resistance (Raw(AC)) and lung elastance (EL). A forced oscillation (FO) technique independently estimated airway resistance (Raw(FO)) and a parameter H(ti) related to tissue elastance. Ovalbumin-immunized and -challenged mice had increased numbers of eosinophils in bronchoalveolar lavage and increased responsiveness to methacholine (MCh). Corresponding parameters from the AC and FO techniques were correlated: Raw(AC) vs. Raw(FO) (r = 0.76) and EL vs. H(ti) (r = 0.88, P < 0.0001 in all cases). AC and FO techniques showed significant increases in tissue elastance in response to MCh but no significant increases in airway resistance. These results demonstrated that the AC and FO techniques yield essentially equivalent results in mice, even when the lung is inhomogeneous, and that the bronchoconstrictive responses to MCh and inflammation in mice are predominantly located in the lung periphery.  相似文献   

5.
We examined the effects of lung volume change and volume history on lung resistance (RL) and its components before and during induced constriction. Eleven subjects, including three current and four former asthmatics, were studied. RL, airway resistance (Raw), and, by subtraction, tissue viscance (Vtis) were measured at different lung volumes before and after a deep inhalation and were repeated after methacholine (MCh) aerosols up to maximal levels of constriction. Vtis, which average 9% of RL at base line, was unchanged by MCh and was not changed after deep inhalation but increased directly with lung volume. MCh aerosols induced constriction by increasing Raw, which was reversed by deep inhalation in inverse proportion to responsiveness. such that the more responsive subjects reversed less after a deep breath. Responsiveness correlated directly with the degree of maximal constriction, as more responsive subjects constricted to a greater degree. These results indicate that in humans Vtis comprises a small fraction of overall RL, which is clearly volume-dependent but unchanged by MCh-induced constriction and unrelated to the degree of responsiveness of the subject.  相似文献   

6.
Peták, Ferenc, Zoltán Hantos, ÁgnesAdamicza, Tibor Asztalos, and Peter D. Sly. Methacholine-inducedbronchoconstriction in rats: effects of intravenous vs. aerosoldelivery. J. Appl. Physiol. 82(5):1479-1487, 1997.To determine the predominant site of action ofmethacholine (MCh) on lung mechanics, two groups of open-chestSprague-Dawley rats were studied. Five rats were measured duringintravenous infusion of MCh (iv group), with doubling of concentrationsfrom 1 to 16 µg · kg1 · min1.Seven rats were measured after aerosol administration of MCh with dosesdoubled from 1 to 16 mg/ml (ae group). Pulmonary input impedance(ZL) between 0.5 and 21 Hz wasdetermined by using a wave-tube technique. A model containing airwayresistance (Raw) and inertance (Iaw) and parenchymal damping (G) andelastance (H) was fitted to theZL spectra. In the iv group, MChinduced dose-dependent increases in Raw [peak response 270 ± 9 (SE) % of the control level; P < 0.05] and in G (340 ± 150%;P < 0.05), with no increase inIaw (30 ± 59%) orH (111 ± 9%). In the ae group, thedose-dependent increases in Raw (191 ± 14%;P < 0.05) andG (385 ± 35%; P < 0.05) were associated with a significant increase in H (202 ± 8%; P < 0.05).Measurements with different resident gases [air vs. neon-oxygenmixture, as suggested (K. R. Lutchen, Z. Hantos, F. Peták,Á. Adamicza, and B. Suki. J. Appl.Physiol. 80: 1841-1849, 1996)] in thecontrol and constricted states in another group of rats suggested thatthe entire increase seen in G during the ivchallenge was due to ventilation inhomogeneity, whereas the aechallenge might also have involved real tissue contractions viaselective stimulation of the muscarinic receptors.

  相似文献   

7.

Background

To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice.

Methods

BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 105 pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data.

Results

Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 104 cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC200 Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC200 Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE2 at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d.

Conclusion

Infection with 1 × 105 pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice.  相似文献   

8.
Bronchial circulatory reversal of methacholine-induced airway constriction   总被引:2,自引:0,他引:2  
Although a role for the bronchial circulation in clearance of bronchoactive agents has been frequently proposed, experimental evidence is limited. In this study, we determined the importance of bronchial blood flow (QBA) in the recovery from methacholine-(MCh) induced bronchoconstriction. In 10 pentobarbital-anesthetized ventilated sheep, the bronchial branch of the bronchoesophageal artery was cannulated and perfused (0.7 ml.min-1.kg-1) with blood pumped from the femoral artery. MCh was infused directly into the bronchial artery at increasing concentrations (10(-7) to 10(-5) M). MCh infusion caused a concentration-dependent increase in airway resistance at constant QBA. However, the time constant of recovery (TC) from airway constriction after cessation of the MCh infusion was not dependent on the MCh concentration or the magnitude of the increases in airway resistance. When QBA was at 50, 100, and 200% of control level, with constant MCh concentration, TC was 44 +/- 6, 25 +/- 2, and 24 +/- 2 (SE) s at each flow level, respectively. TC at 50% of control QBA was significantly greater than at control QBA (P less than 0.01). Thus the magnitude of QBA can alter the time course of recovery from MCh-induced increases in airway resistance. These results document the importance of QBA in reversing agonist-induced constriction and suggest that an impaired bronchial circulation may contribute to the mechanism of airway hyperreactivity.  相似文献   

9.
一种测量镇静大鼠气道反应性的非侵入式新方法   总被引:1,自引:0,他引:1  
魏尔清  田炯 《生理学报》1997,49(4):471-474
将腹腔注射地西泮而镇静的SD大鼠,置于体积描记器,测定其自主呼吸变化。吸入氯化乙酰甲胆碱和氯化乙酰胆碱气雾对呼吸幅度无明显影响,可深度依赖性地增加呼吸频率,且两药的作用强度相似,但MCh作用维持11min,Ach仅维持3min。乌拉坦麻醉可抑制呼吸和对MCh的反应;硫酸阿托品,硫酸沙丁胺醇和氨茶碱抑制MCh引起的频率增快;吸入抗原气雾后6h能增强致敏大鼠对MCh的敏感性。  相似文献   

10.
Intratracheal administration of interleukin-10 (IL-10) has been reported to inhibit allergic inflammation but augment airway hyperresponsiveness (AHR). In the present study, airway and smooth muscle responsiveness to methacholine (MCh) were compared in wild-type (WT) and IL-10-deficient (IL-10-KO) mice to investigate the role of endogenous IL-10 in AHR development. Naive WT and IL-10-KO mice exhibited similar dose-dependent increases in airway resistance (Raw) to intravenous MCh. Sensitization and challenge with ragweed (RW) induced a twofold increase in responsiveness to intravenous MCh in WT mice, but hyperresponsiveness was not observed in similarly treated IL-10-KO mice. Likewise, tracheal rings from RW-sensitized and -challenged WT mice exhibited a fourfold greater responsiveness to MCh than IL-10-KO tracheal preparations. Measurements of airway constriction by whole body plethysmography further supported the Raw and tracheal ring data (i.e., AHR was not observed in the absence of IL-10). Interestingly, factors previously implicated in the development of AHR, including IL-4, IL-5, IL-13, IgA, IgG1, IgE, eosinophilia, and lymphocyte recruitment to the airways, were upregulated in the IL-10-KO mice. Treatment with recombinant murine IL-10 at the time of allergen challenge reduced the magnitude of inflammation but reinstated AHR development in IL-10-KO mice. Adoptive transfer of mononuclear splenocytes to IL-10-sufficient severe combined immunodeficient mice indicated that lymphocytes were an important source of the IL-10 impacting AHR development. These results provide evidence that IL-10 expression promotes the development of allergen-induced smooth muscle hyperresponsiveness.  相似文献   

11.
Shen, X., S. J. Gunst, and R. S. Tepper. Effect oftidal volume and frequency on airway responsiveness in mechanically ventilated rabbits. J. Appl. Physiol.83(4): 1202-1208, 1997.We evaluated the effects of the rate andvolume of tidal ventilation on airway resistance (Raw) duringintravenous methacholine (MCh) challenge in mechanically ventilatedrabbits. Five rabbits were challenged at tidal volumes of 5, 10, and 20 ml/kg at a frequency of 15 breaths/min and also under static conditions(0 ml/kg tidal volume). Four rabbits were subjected to MCh challenge atfrequencies of 6 and 30 breaths/min with a tidal volume of 10 ml/kg andalso under static conditions. In both groups, the increase in Raw with MCh challenge was significantly greater under static conditions thanduring tidal ventilation at any frequency or volume. Increases in thevolume or frequency of tidal ventilation resulted in significant decreases in Raw in response to MCh. We conclude that tidal breathing suppresses airway responsiveness in rabbits in vivo. The suppression ofnarrowing in response to MCh increases as the magnitude of the volumeor the frequency of the tidal oscillations is increased. Our findingssuggest that the effect of lung volume changes on airway responsivenessin vivo is primarily related to the stretch of airway smooth muscle.

  相似文献   

12.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Changes in pulmonary hemodynamics have been shown to alter the mechanical properties of the lungs, but the exact mechanisms are not clear. We therefore investigated the effects of alterations in pulmonary vascular pressure and flow (Q(p)) on the mechanical properties of the airways and the parenchyma by varying these parameters independently in three groups of isolated perfused normal rat lungs. The pulmonary capillary pressure (Pc(est)), estimated from the pulmonary arterial (Ppa) and left atrial pressure (Pla), was increased at constant Q(p) (n = 7), or Q(p) was changed at Pc(est) = 10 mmHg (n = 7) and at Pc(est) = 20 mmHg (n = 6). In each condition, the airway resistance (Raw) and parenchymal damping (G) and elastance (H) were identified from the low-frequency pulmonary input impedance spectra. The results of measurements made under isogravimetric conditions were analyzed. The changes observed in the mechanical parameters were consistent with an altered Pla: monotonous increases in Raw were observed with increasing Pla, whereas G and H were minimal at Pla of approximately 7-10 mmHg and increased at lower and higher Pla. The results indicate that Pla, and not Ppa or Q(p), is the primary determinant of the mechanical condition of the lungs after acute changes in pulmonary hemodynamics: the parenchymal mechanics are impaired if Pla is lower or higher than physiological, whereas airway narrowing occurs at high Pla.  相似文献   

14.
The involvement of pulmonary circulation in the mechanical properties was studied in isolated rat lungs. Pulmonary input impedance (ZL) was measured at a mean transpulmonary pressure (Ptpmean) of 2 cmH2O before and after physiological perfusion with either blood or albumin. In these lungs and in a group of unperfused lungs, ZL was also measured at Ptpmean values between 1 and 8 cmH2O. Airway resistance (Raw) and parenchymal damping (G) and elastance (H) were estimated from ZL. End-expiratory lung volume (EELV) was measured by immersion before and after blood perfusion. The orientation of the elastin fibers relative to the basal membrane was assessed in additional unperfused and blood-perfused lungs. Pressurization of the pulmonary capillaries significantly decreased H by 31.5 +/- 3.7% and 18.7 +/- 2.7% for blood and albumin, respectively. Perfusion had no effect on Raw but markedly altered the Ptpmean dependences of G and H < 4 cmH2O, with significantly lower values than in the unperfused lungs. At a Ptpmean of 2 cmH2O, EELV increased by 31 +/- 11% (P = 0.01) following pressurization of the capillaries, and the elastin fibers became more parallel to the basal membrane. Because the organization of elastin fibers results in smaller H values of the individual alveolus, the higher H in the unperfused lungs is probably due to a partial alveolar collapse leading to a loss in lung volume. We conclude that the physiological pressure in the pulmonary capillaries is an important mechanical factor in the maintenance of the stability of the alveolar architecture.  相似文献   

15.
We have recently shown in dogs that much of the increase in lung resistance (RL) after induced constriction can be attributed to increases in tissue resistance, the pressure drop in phase with flow across the lung tissues (Rti). Rti is dependent on lung volume (VL) even after induced constriction. As maximal responses in RL to constrictor agonists can also be affected by changes in VL, we questioned whether changes in the plateau response with VL could be attributed in part to changes in the resistive properties of lung tissues. We studied the effect of changes in VL on RL, Rti, airway resistance (Raw), and lung elastance (EL) during maximal methacholine (MCh)-induced constriction in 8 anesthetized, paralyzed, open-chest mongrel dogs. We measured tracheal flow and pressure (Ptr) and alveolar pressure (PA), the latter using alveolar capsules, during tidal ventilation [positive end-expiratory pressure (PEEP) = 5.0 cmH2O, tidal volume = 15 ml/kg, frequency = 0.3 Hz]. Measurements were recorded at baseline and after the aerosolization of increasing concentrations of MCh until a clear plateau response had been achieved. VL was then altered by changing PEEP to 2.5, 7.5, and 10 cmH2O. RL changed only when PEEP was altered from 5 to 10 cmH2O (P < 0.01). EL changed when PEEP was changed from 5 to 7.5 and 5 to 10 cmH2O (P < 0.05). Rti and Raw varied significantly with all three maneuvers (P < 0.05). Our data demonstrate that the effects of VL on the plateau response reflect a complex combination of changes in tissue resistance, airway caliber, and lung recoil.  相似文献   

16.
A comparison of the dose-response behavior of canine airways and parenchyma   总被引:1,自引:0,他引:1  
We compared the histamine responsiveness of canine airways and parenchymal tissues in six anesthetized paralyzed open-chest mongrel dogs, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue viscance (Vti). Pressure was measured during tidal breathing (frequency was 0.3 Hz) at the trachea and in three alveolar regions by use of alveolar capsules. Measurements were taken before and after the delivery of increasing concentrations of aerosolized histamine (0.1-30 mg/ml). We found that Vti accounted for 78 +/- 8% of RL under base-line conditions; this proportion remained relatively constant throughout the histamine concentration-response curve. There was a significant correlation between percent change in Vti and percent change in Raw at all levels of histamine-induced constriction (P less than 0.001). Moreover, the sensitivity of the tissues and airways (defined as the concentration of histamine required to double resistance) was remarkably similar. We conclude that, at this frequency of ventilation, Vti accounts for the major portion of RL both under base-line conditions and after histamine-induced constriction. Although increases in RL cannot be attributed solely to events occurring in the airways, the close correlation between changes in Raw and Vti and the similar sensitivities of the two support the use of indexes reflecting changes in airway caliber as an indicator of overall lung histamine responsiveness.  相似文献   

17.
Altered perfusion of the bronchial mucosal plexus relative to the adventitial plexus may contribute to geometric changes in the airway wall and lumen. We studied bronchial perfusion distribution in sheep by using fluorescent microspheres at baseline and during intrabronchial artery challenge with methacholine chloride (MCh; n = 7). Additionally, we measured airway resistance (Raw) during MCh with control or increased perfusion (n = 9). Raw with MCh was significantly greater for high than control flow. Microspheres in histological sections lodged predominantly in the mucosa (60%), and this was not altered by MCh. However, more microspheres lodged in airways >1-mm in diameter during MCh and increased perfusion than MCh and control flow. In airways < or =1 mm in diameter, fewer microspheres lodged during control than increased flow. If the number of microspheres represents regional agonist access to airway smooth muscle, then the differences observed in Raw can be explained by the distribution of agonist. During challenge, there was greater MCh delivery to larger airways during increased flow and less delivery to smaller airways during control flow. The results demonstrate the effects of axial perfusion distribution on Raw.  相似文献   

18.
For studiesinvestigating the mechanisms underlying the development of allergicconditions such as asthma, noninvasive methodologies for separatingairway and parenchymal mechanics in animal models are required. Todevelop such a method, seven Brown Norway rats were studied on threeoccasions over a 14-day period. After the baseline measurements, on thethird day inhaled methacholine was administered. Once lung functionreturned to the baseline level, a thoracotomy was performed to comparethe lung mechanics in the intact- and open-chest conditions. On eachoccasion, the rats were anesthetized, paralyzed, and intubated.Small-amplitude oscillations between 0.5 and 21 Hz were applied througha wave tube to obtain respiratory impedance (Zrs). Esophageal pressurewas measured to separate Zrs into pulmonary(ZL) and chest wall (Zw)components. A model containing a frequency-independent resistance andinertance and a tissue component, including tissue damping andelastance, was fitted to Zrs,ZL, and Zw spectra. Measurementsof Zrs, ZL, or Zw and the modelparameters calculated from them did not differ among tests. The numberof animals required to show group changes in lung mechanics wassignificantly lower when animals were measured noninvasively than whenthe group changes were calculated from open-chestmeasurements. In conclusion, the method reported in thisstudy can be used to separate airway and lung tissue mechanics noninvasively over a series of tests and can detect pulmonary constrictor responses for the airways and the parenchyma separately.

  相似文献   

19.
A method for the noninvasive measurement of airway responsiveness was validated in allergic BALB/c mice. With head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)) as an indicator of airway obstruction, responses to inhaled methacholine (MCh) and the allergen ovalbumin were measured in conscious mice. Allergen-sensitized and -challenged mice developed airway hyperresponsiveness as measured by EF(50) to aerosolized MCh compared with that in control animals. This response was associated with increased allergen-specific IgE and IgG1 production, increased levels of interleukin-4 and interleukin-5 in bronchoalveolar lavage fluid and eosinophilic lung inflammation. Ovalbumin aerosol challenge elicited no acute bronchoconstriction but resulted in a significant decline in EF(50) baseline values 24 h after challenge in allergic mice. The decline in EF(50) to MCh challenge correlated closely with simultaneous decreases in pulmonary conductance and dynamic compliance. The decrease in EF(50) was partly inhibited by pretreatment with the inhaled beta(2)-agonist salbutamol. We conclude that measurement of EF(50) to inhaled bronchoconstrictors by head-out body plethysmography is a valid measure of airway hyperresponsiveness in mice.  相似文献   

20.

Background

The parameters RN (Newtonian resistance), G (tissue damping), and H (tissue elastance) of the constant phase model of respiratory mechanics provide information concerning the site of altered mechanical properties of the lung. The aims of this study were to compare the site of allergic airway narrowing implied from respiratory mechanics to a direct assessment by morphometry and to evaluate the effects of exogenous surfactant administration on the site and magnitude of airway narrowing.

Methods

We induced airway narrowing by ovalbumin sensitization and challenge and we tested the effects of a natural surfactant lacking surfactant proteins A and D (Infasurf®) on airway responses. Sensitized, mechanically ventilated Brown Norway rats underwent an aerosol challenge with 5% ovalbumin or vehicle. Other animals received nebulized surfactant prior to challenge. Three or 20 minutes after ovalbumin challenge, airway luminal areas were assessed on snap-frozen lungs by morphometry.

Results

At 3 minutes, RN and G detected large airway narrowing whereas at 20 minutes G and H detected small airway narrowing. Surfactant inhibited RN at the peak of the early allergic response and ovalbumin-induced increase in bronchoalveolar lavage fluid cysteinyl leukotrienes and amphiregulin but not IgE-induced mast cell activation in vitro.

Conclusion

Allergen challenge triggers the rapid onset of large airway narrowing, detected by RN and G, and subsequent peripheral airway narrowing detected by G and H. Surfactant inhibits airway narrowing and reduces mast cell-derived mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号